检 索
学术期刊
切换导航
首页
文章
期刊
投稿
首发
学术会议
图书中心
新闻
新闻动态
科学前沿
合作
我们
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
题名
基于改进BiRTE的渔业健康养殖标准复杂关系抽取
DOI
作者
宋奇书1,2,3,4 于红1,2,3,4 乔诗晗1,2,3,4 罗璇1,2,3,4 李光宇1,2,3,4 邵立铭1,2,3,4 张思佳1,2,3,4
作者单位
1.大连海洋大学信息工程学院;2.大连市智慧渔业重点实验室;3.设施渔业教育部重点实验室(大连海洋大学);4.辽宁省海洋信息技术重点实验室
摘要
为解决渔业健康养殖标准文本关系抽取领域特定性强、语意复杂导致关系抽取准确率不高等问题,提出了基于改进BiRTE的渔业健康养殖标准复杂关系抽取方法,针对实体和语义关联建模,将RoBERTa作为编码器,采用全词掩码和动态掩码的方式增强词向量特征表示,并在此基础上融合了自注意力机制(Self-Attention, SelfATT)将实体特征与关系特征结合聚焦,加强实体抽取与关系预测的联系,从而提升渔业标准文本抽取的准确性。结果表明:本文提出的基于改进BiRTE的渔业健康养殖标准复杂关系抽取模型(RoBERTa-BiRTE-SelfATT)对渔业标准复杂关系抽取的准确率、召回率和F1值分别为95.9%、95.4%、95.7%,较BiRTE模型分别提升了4.2%、3.1%、3.8%。研究表明,本文提出的渔业健康养殖标准复杂关系抽取模型RoBERTa-BiRTE-SelfATT可以有效解决渔业标准文本关系抽取中专有名词识别不准确、语意复杂导致实体关系难以抽取的问题,是一种有效的渔业标准复杂关系抽取方法。
关键词
渔业标准;关系抽取;重叠关系;复杂关系;自注意力机制
刊名
中国水产学报
ISSN
3079-1456
年、卷(期)
20241
所属期刊栏目
地球与环境
打印