检 索
学术期刊
切换导航
首页
文章
期刊
投稿
首发
学术会议
图书中心
新闻
新闻动态
科学前沿
合作
我们
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
题名
基于双通道卷积神经网络的文本情感分类算法
DOI
作者
申昌 冀俊忠
作者单位
北京工业大学信息学部多媒体与智能软件技术北京市重点实验室
摘要
针对现有深度学习方法在文本情感分类任务中特征提取能力方面的不足,提出基于扩展特征和动态池化的双通道卷积神经网络的文本情感分类算法.首先,结合情感词、词性、程度副词、否定词和标点符号等多种影响文本情感倾向的词语特征,形成一个扩展文本特征.然后,把词向量特征与扩展文本特征分别作为卷积神经网络的两个输入通道,采用动态k-max池化策略,提升模型提取特征的能力.在多个标准英文数据集上的文本情感分类实验表明,文中算法的分类性能不仅高于单通道卷积神经网络算法,而且相比一些代表性算法也具有一定的优势.
关键词
文本情感分类;卷积神经网络;双通道;扩展特征;动态k-max池化
刊名
人工智能研究
ISSN
3078-9753
年、卷(期)
20183
所属期刊栏目
工程技术
打印