针对大数据环境下属性约简问题,提出基于MapReduce改进离散型萤火虫算法(IDGSO)和多重分形(MFD)的属性约简方法.首先,通过对萤火虫个体的移动方式进行离散化改进,引入迁徙策略和高斯变异策略,避免陷入局部最优,并提出改进离散型萤火虫算法.然后,将IDGSO结合MFD应用于属性约简中.最后,针对大数据环境下属性约简问题,采用MapReduce编程模式,实现对IDGSO和MFD的并行化.在UCI数据集和实际气象数据集上的实验表明,文中算法约简性能较优,运行效率较快,具有较好的有效性和可行性.