检 索
学术期刊
切换导航
首页
文章
期刊
投稿
首发
学术会议
图书中心
新闻
新闻动态
科学前沿
合作
我们
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
题名
基于深度学习的芯片图像超分辨率重建
DOI
作者
范明明1 池源2 张铭津1 李云松1
作者单位
1.西安电子科技大学综合业务网理论及关键技术国家重点实验室;2.工业和信息化部电子第五研究所电子元器件可靠性物理及其应用技术重点实验室
摘要
考虑到卷积神经网络可以通过训练过程引入图像的先验知识,文中提出基于深度学习的芯片图像超分辨率重建.利用卷积神经网络改善迭代反投影法的初始估计图像,通过迭代过程引入图像序列间的互补信息,建立芯片图像的样本集.实验表明,在不同放大倍数下,改进算法的客观评价指标平均值均较高,在芯片图像中的电路密集处,改进算法的主观视觉感受也较好.同时,文中算法适用于自然图像.
关键词
超分辨率重建;卷积神经网络;迭代反投影;芯片硬件木马
刊名
人工智能研究
ISSN
3078-9753
年、卷(期)
20198
所属期刊栏目
工程技术
打印