检 索
学术期刊
切换导航
首页
文章
期刊
投稿
首发
学术会议
图书中心
新闻
新闻动态
科学前沿
合作
我们
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
题名
基于IPSO神经网络的风电机组主轴状态监测
DOI
作者
罗勇
作者单位
大唐新能源安徽公司
摘要
风电机组主轴是叶轮和齿轮箱的连接部分,在机组传动链中具有传递转矩和能量的作用,因此对主轴进行状态监测关系到风电机组的稳定性。将改进粒子群算法(IPSO)与BP神经网络相结合构造主轴温度模型并进行预测。当主轴发生故障时,模型输入的观测向量发生异常变化,导致模型预测残差发生改变。为提高主轴异常预警的灵敏度和可靠性,文中采用基于莱依特准则的双滑动窗口对预测残差序列进行实时的统计分析,如果残差均值或标准差超出设定的故障报警阈值时,发出报警信息。
关键词
主轴;状态监测;IPSO-BP网络;莱依特准则;双滑动窗口
刊名
能源学报
ISSN
3079-0093
年、卷(期)
20185
所属期刊栏目
工程技术
打印