检 索
学术期刊
切换导航
首页
文章
期刊
投稿
首发
学术会议
图书中心
新闻
新闻动态
科学前沿
合作
我们
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
题名
基于深度中心邻域金字塔结构的显著目标检测
DOI
作者
陈琴朱磊后云龙邓慧萍吴谨 武汉科技大学信息科学与工程学院
作者单位
摘要
基于中心邻域的对比度计算在基于深度学习的算法中应用甚少.因此,文中提出基于深度中心邻域金字塔结构的显著目标检测方法.结合中心邻域对比度机制和卷积神经网络,用于显著目标检测.首先为网络的各阶段引入深层语义特征.再利用扩张卷积建立中心邻域金字塔,捕获不同级别的对比度信息,生成多尺度注意力子图.最后进一步融合所有注意力子图,得到最终的显著目标检测结果.在4个公用数据集上的对比实验表明,文中算法具有较低的平均绝对误差和较高的F测度值.
关键词
显著性目标检测;卷积神经网络;中心邻域对比度;扩张卷积
刊名
人工智能研究
ISSN
3078-9753
年、卷(期)
202012
所属期刊栏目
工程技术
打印