检 索
学术期刊
切换导航
首页
文章
期刊
投稿
首发
学术会议
图书中心
新闻
新闻动态
科学前沿
合作
我们
一封信
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
题名
基于深度强化学习的智能频谱分配策略研究
DOI
作者
杨洁祎 金光 朱家骅
作者单位
宁波大学信息科学与工程学院
摘要
随着无线网络被广泛使用,频谱资源变得越来越稀缺,高效的频谱分配策略对无线通信至关重要。动态频谱接入是一个动态时变优化问题,基于固定编码的算法无法自适应复杂的网络环境。本文将深度强化学习算法引入到认知无线电系统中,使智能体在未知频谱环境下不断与环境进行交互,学习到最佳频谱选择策略,提高频谱资源利用效率。实验结果表明:该算法在复杂的网络环境下能有效学习到最佳策略,且当网络环境发生变化时,算法能自动调整,实现二次收敛。
关键词
认知无线电;频谱接入;深度强化学习
刊名
数据与科学
ISSN
3078-9834
年、卷(期)
20206
所属期刊栏目
数学与物理
打印