针对深度人脸识别任务在移动端遇到的存储空间受限、预测所需时间长、算法性能不高等问题,提出了一种改进的Mobilenet算法。将Mobilenet算法的监督信号Softmax改进为AM-Softmax,通过多次实验,设计出AMSoftmax比较适合Mobilenet算法的附加余量和缩放因子值。训练集和验证集来源于数据集MS-Celeb-1M-v1c和数据集Asian-Celeb,并在LFW数据集上对改进Mobilenet算法的有效性进行了验证。通过与初始Mobilenet算法模型的对比实验发现,采用改进Mobilenet算法的性能较优,准确率比softmax提升了十个百分点。充分利用数据集AsianCeleb中的亚洲名人ID,增加训练样本数,将性能进一步提高了四个百分点。