检 索
学术期刊
切换导航
首页
文章
期刊
投稿
首发
学术会议
图书中心
新闻
新闻动态
科学前沿
合作
我们
一封信
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
题名
融合深度匹配特征的答案选择模型
DOI
作者
冯文政 唐杰
作者单位
清华大学计算机科学与技术系
摘要
答案选择是自动问答系统中的关键任务之一,其主要目的是根据问题与候选答案的相似性对候选答案进行排序,并选择出相关性较高的答案返回给用户。可将其看作成一个文本对的匹配问题。该文利用词向量、双向LSTM、2D神经网络等深度学习模型对问题—答案对的语义匹配特征进行了提取,并将其与传统NLP特征相结合,提出一种融合深度匹配特征的答案选择模型。在Qatar Living社区问答数据集上的实验显示,融合深度匹配特征的答案选择模型比基于传统特征的模型MAP值高5%左右。
关键词
问答系统;答案选择;深度匹配模型
刊名
当代中文学刊
ISSN
3008-0282
年、卷(期)
20191
所属期刊栏目
人文社科
打印