检 索
学术期刊
切换导航
首页
文章
期刊
投稿
首发
学术会议
图书中心
新闻
新闻动态
科学前沿
合作
我们
一封信
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
题名
注意力增强的双向LSTM情感分析
DOI
作者
关鹏飞1 李宝安1 吕学强1 周建设2
作者单位
1.北京信息科技大学网络文化与数字传播北京市重点实验室;2.首都师范大学北京成像技术高精尖创新中心
摘要
在基于深度学习的情感分析工作中,传统的注意力机制主要以串行的方式作为其他模型的下一层,用于学习其他神经网络模型输出的权重分布。该文在探究使用深度学习进行句子级情感分析任务的基础上,提出一种注意力增强的双向LSTM模型。模型使用注意力机制直接从词向量的基础上学习每个词对句子情感倾向的权重分布,从而学习到能增强分类效果的词语,使用双向LSTM学习文本的语义信息。最终,通过并行融合的方式提升分类效果。通过在NLPCC 2014情感分析语料上进行测试,该模型的结果优于其他句子级情感分类模型。
关键词
注意力机制;双向LSTM;情感分析
刊名
当代中文学刊
ISSN
3008-0282
年、卷(期)
20194
所属期刊栏目
人文社科
打印