为了学习文本的语义表征,以往的研究者主要依赖于复杂的循环神经网络(recurrent neural networks,RNNs)和监督式学习方法。该文提出了一种门控联合池化自编码器(gated mean-max AAE)用于学习中英文的文本语义表征。该文的自编码器完全通过多头自注意力机制(multi-head self-attention mechanism)来构建编码器和解码器网络。在编码阶段,提出了均值—最大化(mean-max)联合表征策略,即同时运用平均池化(mean pooling)和最大池化(max pooling)操作来捕获输入文本中多样性的语义信息。为促使联合池化表征可以全面地指导重构过程,解码器采用门控操作进行动态关注。通过在大规模中英文未标注语料上训练模型,获得了高质量的句子编码器。在重构文本段落的实验中,该文模型在实验效果和计算效率上均超越了传统的RNNs模型。将公开训练好的文本编码器,使其可以方便地运用于后续的研究。