检 索
学术期刊
切换导航
首页
文章
期刊
投稿
首发
学术会议
图书中心
新闻
新闻动态
科学前沿
合作
我们
一封信
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
题名
基于答案及其上下文信息的问题生成模型
DOI
作者
谭红叶1 孙秀琴2 闫真1
作者单位
1.山西大学计算机与信息技术学院;2.山西大学计算智能与中文信息处理教育部重点实验室
摘要
基于文本的问题生成是从给定的句子或段落中生成相关问题。目前,主要采用序列到序列的神经网络模型来研究包含答案的句子生成问题,然而这些方法存在以下问题:①生成的疑问词与答案类型不匹配;②问题与答案的相关性不强。该文提出一个基于答案及其上下文信息的问题生成模型。该模型首先根据答案与上下文信息的关系确定与答案类型匹配的疑问词;然后利用答案及其上下文信息确定问题相关词,使问题尽可能使用原文中的词;最后结合原句作为输入来生成问题。相关实验表明,该文提出的模型性能明显优于基线系统。
关键词
问题生成;神经网络;问题相关词
刊名
当代中文学刊
ISSN
3008-0282
年、卷(期)
20207
所属期刊栏目
人文社科
打印