在高考语文阅读理解中,观点类问题中的观点表达较为抽象,为了从阅读材料中获取与问题相关的答案信息,需要对问题中的抽象词语进行扩展,达到扩展观点类问题的目的。该文提出了基于多任务层级长短时记忆网络(Multi-HLSTM)的问题扩展建模方法。首先将阅读材料与问题进行交互注意,同时建模问题预测和答案预测两个任务,使模型对问题进一步扩展。最后将扩展后的问题与原问题同时应用于问题的答案候选句抽取中。通过在高考语文观点类的真题、模拟题以及DuReader的描述观点类数据集上进行实验,验证了本文的问题扩展模型对答案候选句的抽取性能具有一定的提升作用。