检 索
学术期刊
切换导航
首页
文章
期刊
投稿
首发
学术会议
图书中心
新闻
新闻动态
科学前沿
合作
我们
一封信
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
题名
基于协同过滤Attention机制的情感分析模型
DOI
作者
赵冬梅1,2 李雅2 陶建华2 顾明亮1
作者单位
1.江苏师范大学物理与电子工程学院;2.中国科学院自动化研究所模式识别国家重点实验室
摘要
该文主要研究在评论性数据中用户个性及产品信息对数据情感类别的影响。在影响数据情感类型的众多因素中,该文认为评价的主体即用户以及被评价的对象等信息对评论数据的情感至关重要。该文提出一种基于协同过滤Attention机制的情感分析方法(LSTM-CFA),使用协同过滤(CF)算法计算出用户兴趣分布矩阵,再将矩阵利用SVD分解后加入层次LSTM模型,作为模型注意力机制提取文档特征、实现情感分类。实验表明LSTMCFA方法能够高效提取用户个性与产品属性信息,显著提升了情感分类的准确率。
关键词
情感分析;协同过滤;LSTM;注意力机制;SVD
刊名
中文研究
ISSN
3007-9896
年、卷(期)
20181
所属期刊栏目
人文社科
打印