检 索
学术期刊
切换导航
首页
文章
期刊
投稿
首发
学术会议
图书中心
新闻
新闻动态
科学前沿
合作
我们
一封信
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
题名
局部几何保持的Laplacian代价敏感支持向量机
DOI
作者
周国华1,2 宋洁1 殷新春2
作者单位
1.常州轻工职业技术学院信息工程系;2.扬州大学信息工程学院
摘要
不平衡数据广泛存在于现实生活中,代价敏感学习能有效解决这一问题。然而,当数据的标记信息有限或不足时,代价敏感学习分类器的分类精度大大下降,分类性能得不到保证。针对这一情况,该文提出了一种局部几何保持的Laplacian代价敏感支持向量机(LPCS-LapSVM),该模型基于半监督学习框架,将代价敏感学习和类内局部保持散度的思想引入其中,从考虑内在可分辨信息和样本的局部几何分布两方面来提高代价敏感支持向量机在标记信息有限的场景中的分类性能。UCI数据集上的实验结果表明了该算法的有效性。
关键词
代价敏感学习;半监督学习;Laplacian支持向量机;局部几何保持
刊名
中文研究
ISSN
3007-9896
年、卷(期)
20188
所属期刊栏目
人文社科
打印