新能源电力系统中的储能技术探讨
赵亮
生成PDF 清样下载 引用

复制成功

导出题录

参考文献( GB/T 7714-2015 ) 复制

赵亮,. 新能源电力系统中的储能技术探讨[J]. 低碳研究,202111. DOI:10.12721/ccn.2021.157004.
摘要: 当今随着可持续发展的理念被提出,我国环境和能源问题已经成为社会关注的热点内容,多数行业通过持续的发展清洁能源和新能源的方式提高自身的发展效率,促进企业持续稳定的发展。在电力企业中,风能和太阳能是一种清洁的能源,不仅不会出现废物,也能够进行能源的输送,但是风能和太阳能存在一定的不稳定性,能够促进电力系统稳定的运行,同时也可以带动社会经济建设持续的发展。因此在本文中,主要对新能源电力系统中的储能技术做出全面的分析,在此基础上提出下文内容,希望能够给同行业工作人员提供相应的参考价值。
关键词: 新能源;电力系统;储能技术;分析
DOI:10.12721/ccn.2021.157004
基金资助:

社会的持续性发展,使得能源需求不断增加,基于能源需求与环境恶化的矛盾日益凸显,需要大力发展新能源进行弥补。当前,我国能源结构不断的优化,传统能源与新能源共存,导致电网系统更加复杂。基于新能源的强力支持下,需要大力推动新能源领域的电力系统,保障社会的用电压力需求。新能源电力系统中,有效应用储能技术,对新能源进行合理的调节,保障新能源的利用率最大化,推动当前电力系统的平稳运行,实现长足发展。
1储能技术在新能源电力系统中的实际应用
1.1太阳能发电技术

从当前的角度对能源技术进行分析,太阳能是最常见的新能源。利用太阳能为电网提供电力,保障源源不断的电力,依托的是太阳本身较强的可再生性。与其他能源相比较,太阳拥有的能源是取之不竭的,并且具有稳定性。可以在设备转化基础上,将其转化为电能。例如,太阳能池板利用设备收集太阳能,对太阳能进行处理后,产生集热效应。但是与其他的新能源相比较,太阳能能提供的电能较低,难以为功率较大的电力设备提供电力。因此,只能应用于功率较小的设备或者系统中,保障新能源的有效应用。同时,研究人员需要基于太阳能的应用基础上,着手研发新技术,保障太阳能的能源能得到更广泛的应用,提升太阳能的利用率。
1.2风能电力系统

对于新能源电力系统来说,风能资源是其中最具代表性的种类,同时也是应用较为普遍的一类,分析在风能电力系统当中有关储能技术的实际应用,对于提升风能电力系统的工作效率以及稳定性等具有重要作用。储能技术可以对风能电力系统实际运行过程中的无功功率与有功功率等进行改善与优化,从而保证电力系统能够始终维持一个稳定的运行状态。在此,本文针对某地区应用的风能电力系统进行分析,探讨其储能技术的实际应用情况。该风能电力系统应用了一种超导储能技术,利用这种技术能够对电压方面存在的问题进行有效处理,同时也使得联络线短路以及风速扰动等问题得到了明显改善。在应用这种超导储能的相关技术之前,根据风能电力系统的实际情况,设计了相关的仿真模型,得到了技术应用方面的大量数据,仿真结果显示,在风能电力系统发生问题故障时,超导储能技术依然能够保证风能电厂的稳定性,就算是出现风速扰动的情况,在电力系统当中也能够保证风电场的稳定、持续输出状态,这使得风能电力系统在电压输出方面的状态得到了极大的改善。在这个风能电力系统当中,还有另一个问题,即频率稳定性,利用储能技术来进行处理,在充放电的相关操作过程中,根据风能电力系统实际的负荷变动状态,对系统电力负荷进行适当的调节,从而帮助系统来维持频率稳定。
1.3地热能发电技术

地热能发电技术依靠地热能获得能源,而地热能来源于地球内部。地球自传期间,地心会产生热量,这种热量可以作为能源使用。尽管当前的科技难以直接应用地热能,但是可以通过其散发的热量加以应用。借助热能进行转化,处理获得电能,将其应用于电力和供暖系统中。并且,该能源应用于发电系统中,操作流程简单,是当前较为实用的新型技术。为了保障地热能发电的有效应用,提升电力系统的环保性,技术人员需要保障自身的技术水平满足新能源发电应用的需求,更专注的研究发电技术。结合工作中存在的问题总结,积累经验,针对性的学习相关技术,提升自己的创新意识。
1.4相变储能技术

对于相变储能技术来说,在新能源电力系统当中通常会应用到相变材料当中。这些相变材料在进行吸热时,能够对能量进行储存,而放热时不仅释放了能量,并且其所释放出来的能量具有很高的密度。在新能源电力系统当中,有关相变储能方面的技术通常表现为电储热、冰蓄冷以及熔融盐储热等诸多形式。其中冰蓄冷储能是凭借一些蓄冷的介质来对能量进行调节,减少高峰供电时段所承受的运行压力。熔融盐储热是对无机盐进行加热,使其转变为熔融的形态,然后利用热循环的相关方法来实现传热与储热,这种方法具有高传热以及低腐蚀的特点。电储热技术则是通过金属或者水来进行储热,提供了介质,这样方便了热量的释放和存储,从而使得能源传输效率得到了很大的提升。
2储能系统优化配置的措施
2.1分析系统的组成结构

通过对多种的储能系统进行合理地分析,可以促进其大体积以及功率相对较高和密度高的系统做出相应的并网,在此过程中,要对存储单元的高密度进行合理地控制,这样能够使微网得到十分广泛的应用。在此之外,还要对超级电容装置做出合理地应用,通过采取这种方法,能够对电能的质量进行有效地改善,同时对风电场的功率进行调整的毕竟下,使其最大程度上对风能电场功率做出合理地应用,这样才能更好地帮助装置原理和相关结构变得较为系统化,通过不断地对超级电容管理以及网络控制做出相应的融合,提高整个控制过程中的整体质量,结合光伏发电系统的实际情况,之后再不断分析混合储能系统具有的稳定性,这样便能对其功率进行定型分析,提高其系统的整体使用年限,同时对电池储能系统做出持续的优化完善。
2.2分析储能系统的控制措施

所谓的储能系统,在对其进行相应的配置完成后,必须要科学有效地分析其补偿效果,这样可以使其方便储能系统得到持续的优化以及控制,同时也是作为整个系统不可缺少的重要组成内容,因此为了能够更加全面地对市场发展过程中进行了解,要对储能大功率做出全面的控制,合理地应用放电强等方面的特点,不断地对并网变流器的设计工作引起重视和优化完善,对其功率做出合理地控制,这样才能对输出和输出的实际需要给予重复的满足,提高储能系统自身的复合能力。在此之外,还要对电网的稳定性进行相应的控制,合理地安装控制器储能装置,提高储能系统中的内部自控能力,这样能够有效地生成有功或者无功等电流指令,对储能系统的公路补偿进行不断地加强,在一定程度上促进其稳定性得到优化。通过结合多个方面的管理,可以更加全面提高电网自控能力,充分结合输入和输出的实际应用,最终更加积极地处理好联合调控方面问题。
结束语

综上所述,当前新能源在电力系统中的应用,依托设备与系统可以实现能源转化这一过程,为电力系统提供所需的电能,有效替代了传统电力,避免了不可再生资源的消耗。基于当前的新能源发电技术应用,保障我国各项能源资源进一步发展。在此基础上,还需要不断应用该技术在电力系统中,推动绿色环保改革的浪潮。结合当前的储能技术,对新能源发电进行持续性的研究,解决更多的社会用电需求。
参考文献
[1]黄婕.探讨新能源电力系统中的储能技术[J].电气传动自动化,2019,41(05):57-59.

[2]陈钰慧.浅谈新能源电力系统中的储能技术[J].科技经济导刊,2018(01):55.