请选择 目标期刊

FCSE 综述:催化剂表面活性位点在α,β-不饱和醛加氢中的作用


发布时间:2024-07-05

背景及意义

光催化技术作为高级氧化技术的一种,被认为是去除废水中抗生素污染的环境友好型选择。BiVO4是一种可以被可见光激发、成本低、稳定、无毒且易制备的半导体材料,在光催化体系中应用广泛,然而其光生电子和空穴容易复合、比表面积小等缺点限制了它的应用。针对该问题,本研究提出构建ZnFe2O4和BiVO4异质结催化剂,研究其对于典型喹诺酮类抗生素环丙沙星的可见光降解性能,并对降解中间产物的生态毒性进行了评估。

内容及主要结论

采用溶剂热法制备了ZnFe2O4/BiVO4异质结光催化剂。对催化剂结构进行了系列表征,通过电化学工作站分析了催化剂的光电性能。在可见光下以环丙沙星作为模型污染物进行催化剂的光催化性能研究,根据LC-MS分析确定了环丙沙星的降解产物、可能的降解路径,并利用定量构效关系评估了中间产物的毒性。通过牺牲剂实验初步确定了复合催化剂降解环丙沙星可能的机理。得到了以下结论:

(1)TEM表明,BiVO4呈现纳米薄片形状,复合催化剂中粒径约为10 nm的ZnFe2O4颗粒均匀分布在BiVO4纳米片的表面,二者紧密连接形成异质结结构。XPS结果表明,复合催化剂中Fe 2p和Zn 2p向低结合能方向偏移,Bi 4f和V 2p向高结合能方向移动,ZnFe2O4/BiVO4复合催化剂中存在由BiVO4向ZnFe2O4的电子转移。

(2)ZnFe2O4复合量为30%时,即30% ZnFe2O4/BiVO4有最优异的光催化降解环丙沙星性能,30分钟可见光照射下可以降解约97%环丙沙星,降解速率常数是单独BiVO4的13.8倍,是单独ZnFe2O4的53倍,且TOC去除率达到了约50%。通过牺牲剂实验确认30% ZnFe2O4/BiVO4复合材料间形成Z型异质结,Z型电荷转移机理提高了光生载流子的分离效率进而提高了复合催化剂的光催化降解性能(图1)。

图1. 30% ZnFe2O4/BiVO4 降解环丙沙星的(a)牺牲剂实验和(b)可能的光催化机理示意图

(3)通过LC-MS对环丙沙星光催化剂降解反应中间体进行了表征,并对降解中间体的生态毒性进行了评估(图2),检测到30% ZnFe2O4/BiVO4光催化降解环丙沙星过程中产生的多个中间产物,发现大多数中间产物对大型水蚤的半数致死浓度、致突变性和生物积累因子都低于环丙沙星,表明光催化降解过程显著降低了污染物的生态毒性。

图2. (a)环丙沙星的光催化降解路径,环丙沙星和中间产物的(b) 对大型蚤的LC50、(c) 致突变性和(d)生物累积因子

亮点

本研究制备了ZnFe2O4/BiVO4 Z型异质结光催化剂,在可见光下对环丙沙星表现出优异的降解性能,归因于Z型异质结提高了光生电子和空穴的分离效率,同时显著降低了污染物的生态毒性。


特别声明:本文转载来源“科学网”,仅仅是出于传播信息的需要,并不意味着代表本网站观点或证实其内容的真实性;如其他媒体、网站或个人从本网站转载使用,须保留本网站注明的来源,并自负版权等法律责任;作者如果不希望被转载等相关事宜,请与我们接洽。

在线客服::点击联系客服
联系电话::400-188-5008
客服邮箱::service@ccnpub.com
投诉举报::feedback@ccnpub.com
人工客服

工作时间(9:00-18:00)
官方公众号

科技成果·全球共享