人工智能研究
人工智能研究
《人工智能研究》系开放获取期刊,主要围绕人工智能领域,关注产业政策,报道研究前沿,传播技术趋势,刊载应用案例,推动成果转化,服务我国制造业转型升级发展。本刊支持思想创新、学术创新,倡导科学,繁荣学术,集学术性、思想性为一体,旨在给世界范围内的科学家、学者、科研人员提供一个传播、分享和讨论人工智能领域内不同方向问题与成果的学术交流平台。

ISSN: 3078-9753

《人工智能研究》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。



提示文字!

注:我们将于1~7个工作日告知您审稿结果,请耐心等待;

您也可以在官网首页点击“查看投稿进度”输入文章题目,查询稿件实时进程。


  • 区间二型模糊综合评判下的语言动力学分析 下载:74 浏览:454
  • 莫红 刘芬 《人工智能研究》 2018年10期
  • 摘要:
    为了解决多人对事物的多因素动态评估问题,提出区间二型模糊综合评判下的语言动力学分析方法,给出半连通区间二型模糊集合的表述与运算.综合二型模糊集合与模糊综合评判,探讨二型模糊综合评判方法.结合不同时段的数据,形成多因素动态评估的语言动力学轨迹.最后将区间二型模糊综合评判下的语言动力学系统应用于旅游景区的动态评估中.
  • 基于深度卷积神经网络End-to-End模型的亲属关系认证算法 下载:79 浏览:468
  • 胡正平1 郭增洁1 王蒙1 孙德刚2 任大伟1 《人工智能研究》 2018年10期
  • 摘要:
    针对如何利用人脸图像进行亲属关系认证的问题,提出基于深度卷积神经网络End-to-End模型的亲属关系认证算法.首先,构建一个包含卷积层、全连接层和soft-max分类层的深度卷积神经网络模型.卷积层可以提取亲子图像的隐性特征,全连接层可以将提取的隐性特征映射为亲属关系认证的二分类问题,soft-max分类层可以直接判断该对样本是否具有亲属关系.然后,将成对的标记训练数据输入网络进行迭代,优化深度网络模型参数,直至损失曲线稳定.最后,利用训练完毕的深度网络模型对输入测试图像对进行分类判决,通过统计得到最终的准确率.在KinFaceWI和KinFaceWII数据库上的结果显示,相比以往的亲属关系认证算法,文中模型具有更好的性能.
  • 基于卷积长短时记忆神经网络的蛋白质二级结构预测 下载:76 浏览:439
  • 郭延哺1 李维华1 王兵益2 金宸1 《人工智能研究》 2018年10期
  • 摘要:
    鉴于不同类型氨基酸的相互作用对蛋白质结构预测的影响不同,文中融合卷积神经网络和长短时记忆神经网络模型,提出卷积长短时记忆神经网络,并应用到蛋白质8类二级结构的预测中.首先基于氨基酸序列的类别信息和氨基酸结构的进化信息表示蛋白质序列,并采用卷积提取氨基酸残基之间的局部相关特征,然后利用双向长短时记忆神经网络提取蛋白质序列内部残基之间的远程相互作用,最后将提取的蛋白质的局部相关特征和远程相互作用用于蛋白质8类二级结构的预测.实验表明,相比基准方法,文中模型提高8类二级结构预测的精度,并具有良好的可扩展性.
  • 不同信任结构下约简的证据特征及其一致性 下载:58 浏览:454
  • 郑娜 王加阳 《人工智能研究》 2018年10期
  • 摘要:
    不一致性决策表中广义决策约简与相对约简不完全一致.文中给出划分和覆盖2种信任结构下的广义决策约简和相对约简的概念,研究这2种约简的证据结构特征,分别证明广义决策约简和相对约简是保持广义决策值的似然函数之和与信任函数之和不变的最小属性集合.在此基础上,提出划分和覆盖结构中的广义信任约简,进而分析这2种结构中广义决策约简、广义信任约简及相对约简的一致性,证明广义决策约简必为相对约简协调集且广义决策约简与广义信任约简等价,得出相对约简的核蕴含于广义决策约简的结论.最后分别给出2种信任结构下广义决策约简与相对约简相同的充分必要条件,完善不同信任结构中的约简理论.
  • 基于Rényi散度最大化的多特征闭环检测 下载:56 浏览:441
  • 王小龙 彭国华 《人工智能研究》 2018年10期
  • 摘要:
    相比单特征,多图像特征的组合提供更多的场景判别信息,可以提高检测精度,但需要设计合适的组合准则.文中提出多特征组合的加权方法,把特征组合的闭环检测精度表示为正确匹配和错误匹配的图像对在特征空间中距离分布的Rényi散度,最优特征组合为最大化Rényi散度.分析验证Rényi散度的参数与对应最优特征组合的闭环检测性能之间的关系.实验表明,文中方法可以提高闭环检测精度.当Rényi散度的参数取0.75~1时,最优特征组合性能最佳.
加入编委加入审稿人
人工智能研究  期刊指标
出版年份 2018-2025
发文量 672
访问量 127852
下载量 28651
总被引次数 371
影响因子 0.752
为你推荐