人工智能研究
人工智能研究
《人工智能研究》系开放获取期刊,主要围绕人工智能领域,关注产业政策,报道研究前沿,传播技术趋势,刊载应用案例,推动成果转化,服务我国制造业转型升级发展。本刊支持思想创新、学术创新,倡导科学,繁荣学术,集学术性、思想性为一体,旨在给世界范围内的科学家、学者、科研人员提供一个传播、分享和讨论人工智能领域内不同方向问题与成果的学术交流平台。

ISSN: 3078-9753

《人工智能研究》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。



提示文字!

注:我们将于1~7个工作日告知您审稿结果,请耐心等待;

您也可以在官网首页点击“查看投稿进度”输入文章题目,查询稿件实时进程。


  • 基于云模型理论面向大数据的协作联盟决策评价 下载:68 浏览:386
  • 尹蕾 蒋建国 张国富 ​ 《人工智能研究》 2019年4期
  • 摘要:
    针对联盟决策评价中存在较强的不确定性,提出基于云模型理论面向大数据的协作联盟决策评价方法.首先,构建面向大数据的多任务协作联盟多层决策评价架构,依托大数据处理分析平台获取联盟成员的基本评价指标的评价数据,应用逆向云发生器算法生成相应的评价云,并运用综合云运算产生联盟评价指标的云数字特征.然后,结合联盟评价指标权重和任务权重,运用云加权算术平均数算子进行云集结,分别产生单任务联盟决策评价云和多任务协作联盟决策评价云.再对多任务协作联盟备选方案进行决策评价和选优,以确定最优的联盟方案.最后通过实例与D-S证据理论联盟评价方法进行对比,验证文中方法的有效性.
  • 融合多特征的基于远程监督的中文领域实体关系抽取 下载:72 浏览:387
  • 王斌1 郭剑毅1 线岩团2 王红斌2 余正涛2 ​ 《人工智能研究》 2019年4期
  • 摘要:
    针对从未标记的文本中抽取中文领域实体关系的问题,文中提出基于远程监督的领域实体属性关系抽取的混合方法,利用知识库中已有结构化的关系三元组,从自然语言文本中自动获取训练语料.针对远程监督方法标注数据存在大量噪声的问题,采用隐含狄利克雷分布主题模型抽取主题关键词,再与关系类型进行相似度计算和对关键词模式匹配进行去噪.最后提取词性特征、依存关系特征和短语句法树特征,并进行融合,训练关系抽取模型.实验表明,3种特征融合的F值较高,抽取性能较好.
  • 面向不平衡数据流的自适应加权在线超限学习机算法 下载:78 浏览:369
  • 梅颖 卢诚波 《人工智能研究》 2019年4期
  • 摘要:
    一般的在线学习算法对不平衡数据流的分类识别会遇到较大困难,特别是当数据流发生概念漂移时,对其进行分类会变得更困难.文中提出面向不平衡数据流的自适应加权在线超限学习机算法,自动调整实时到达的训练样本的惩罚参数,达到在线学习不平衡数据流的目的.文中算法可以适用于不同偏斜程度的静态数据流的在线学习和发生概念漂移时数据流的在线学习.理论分析和在多个真实数据流上的实验表明文中算法的正确性和有效性.
加入编委加入审稿人
人工智能研究  期刊指标
出版年份 2018-2025
发文量 672
访问量 127852
下载量 28651
总被引次数 371
影响因子 0.752
为你推荐