人工智能研究
人工智能研究
《人工智能研究》系开放获取期刊,主要围绕人工智能领域,关注产业政策,报道研究前沿,传播技术趋势,刊载应用案例,推动成果转化,服务我国制造业转型升级发展。本刊支持思想创新、学术创新,倡导科学,繁荣学术,集学术性、思想性为一体,旨在给世界范围内的科学家、学者、科研人员提供一个传播、分享和讨论人工智能领域内不同方向问题与成果的学术交流平台。

ISSN: 3078-9753

《人工智能研究》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。



提示文字!

注:我们将于1~7个工作日告知您审稿结果,请耐心等待;

您也可以在官网首页点击“查看投稿进度”输入文章题目,查询稿件实时进程。


  • 目标围捕任务中搜索与预包围阶段的群机器人行为学习 下载:77 浏览:461
  • 薛颂东1 张云正1 曾建潮2 ​ 《人工智能研究》 2018年6期
  • 摘要:
    为了进行群机器人协同作业,提出目标搜索中导航类集体行为学习策略.在使用具有闭环调节功能的动态任务分工方法进行任务分配、自组织地生成多个子群后,在子群中引入基于社会学习微粒群算法的机器人行为学习策略.在子群框架内,机器人各自独立地以感知的共同意向目标信号强度为标准对所有成员排序,将感知优于自己的机器人作为行为示范者.然后在搜索空间各维度上分别随机选择一个行为示范者,学习其在相应维度上的位置坐标,经构造得到搜索空间中自己的学习行为向量,由此决策自身的运动行为.仿真结果表明,在不需要学习全局社会经验的前提下,机器人能针对所属子群的共同意向目标进行协同作业,提高搜索效率.
  • 基于图像云模型语义标注的条件生成对抗网络 下载:72 浏览:471
  • 杜秋平 刘群 《人工智能研究》 2018年6期
  • 摘要:
    在图像补全技术中,当图像丢失较多信息时,仅凭自身已有的信息很难补全图像.因此,文中使用条件生成对抗网络(CGAN)和多粒度认知相结合的方式研究图像的降噪和补全.首先借助云模型中高斯云变换算法提取无标签图像的多层语义信息,并根据不同层次的语义信息对图像进行不同粒度的分割,同时对已分割图像进行自动语义标注.然后将各粒层图像和其对应的语义信息分别作为CGAN的训练数据,得到图像生成对抗网络模型.最后依据此模型补全图像的缺失信息.实验表明,对于Caltech-UCSD Birds和Oxford-102flowers数据集的图像降噪和图像补全,文中算法取得较好效果.
  • 基于数据点本身及其位置关系辅助信息挖掘的分类方法 下载:79 浏览:474
  • 顾苏杭1 王士同2 《人工智能研究》 2018年6期
  • 摘要:
    挖掘除数据点本身以外的信息并以此引导和提高数据分类的精度是值得研究的课题.由此,文中提出建立与数据集对应的网络方法挖掘数据点之间的位置关系及关联信息.依据网络节点连接特性确定节点及子网络效率,赋予节点浓度概念,迭代计算节点的真实影响力,充分挖掘并处理蕴含在数据点关联作用中的信息作为数据点物理特征之外的辅助信息,构建基于数据点本身及其位置关系辅助信息挖掘的分类方法.在保证较高数据分类精度的前提下,文中方法具有较低的时间复杂度.在人造数据集和真实数据集上实验验证文中方法的有效性,该方法尤其与经典的分类方法存在显著区别.
  • 命题逻辑公式模糊软集语义及其在决策分析中的应用 下载:76 浏览:461
  • 吴霞1 张家录1 王鲁达2 《人工智能研究》 2018年6期
  • 摘要:
    基于论域U上模糊软集S=(F,A),引入软命题逻辑公式概念,给出软命题逻辑公式的模糊软语义解释.将决策模糊信息系统转化为决策模糊软集,软决策规则表示为包含有蕴含联结词的软命题逻辑公式.引入软命题逻辑公式的基本真度、条件真度、绝对真度等指标,从充分性、必要性等方面评价软决策规则的有效性、合理性.提出基于决策软集的典型软决策规则提取算法和基于软决策分析的推荐算法,并通过实例和数值实验证明算法的有效性.
加入编委加入审稿人
人工智能研究  期刊指标
出版年份 2018-2025
发文量 672
访问量 127852
下载量 28651
总被引次数 371
影响因子 0.752
为你推荐