人工智能研究
人工智能研究
《人工智能研究》系开放获取期刊,主要围绕人工智能领域,关注产业政策,报道研究前沿,传播技术趋势,刊载应用案例,推动成果转化,服务我国制造业转型升级发展。本刊支持思想创新、学术创新,倡导科学,繁荣学术,集学术性、思想性为一体,旨在给世界范围内的科学家、学者、科研人员提供一个传播、分享和讨论人工智能领域内不同方向问题与成果的学术交流平台。

ISSN: 3078-9753

《人工智能研究》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。



提示文字!

注:我们将于1~7个工作日告知您审稿结果,请耐心等待;

您也可以在官网首页点击“查看投稿进度”输入文章题目,查询稿件实时进程。


  • 基于半直接法SLAM的大场景稠密三维重建系统 下载:78 浏览:469
  • 徐浩楠1 余雷1 费树岷2 《人工智能研究》 2018年8期
  • 摘要:
    当前三维重建系统大多基于特征点法和直接法的同时定位与地图重建(SLAM)系统,特征点法SLAM难以在特征点缺失的地方具有较好的重建结果,直接法SLAM在相机运动过快时难以进行位姿估计,从而造成重建效果不理想.针对上述问题,文中提出基于半直接法SLAM的大场景稠密三维重建系统.通过深度相机(RGB-D相机)扫描,在特征点丰富的区域使用特征点法进行相机位姿估计,在特征点缺失区域使用直接法进行位姿估计,减小光度误差,优化相机位姿.然后使用优化后较准确的相机位姿进行地图构建,采用面元模型,应用构建变形图的方法进行点云的位姿估计和融合,最终获得较理想的三维重建模型.实验表明,文中系统可适用于各个场合的三维重建,得到较理想的三维重建模型.
  • 基于自适应码率分配的压缩传感深度视频编码方法 下载:79 浏览:451
  • 王康1 兰旭光1 李翔伟2 《人工智能研究》 2018年8期
  • 摘要:
    压缩传感深度视频(CSDV)是由深度视频经过压缩得到,它的冗余信息仍然巨大,由此,文中提出基于高斯混合模型和边缘码率分配的深度视频编码方法.在时域方向上,使用压缩传感,压缩八帧深度视频,得到一帧CSDV图像.为了减小量化的计算复杂度,将一帧CSDV图像分割成一系列大小相同且互不重合的视频块,使用Canny算子作为边界提取工具提取视频块的边界.根据每个视频块中非零像素所占的百分比,给不同的视频块分配不同的比特数.在模型中,使用高斯混合模型建模这些视频块,用于设计乘积矢量量化器,再使用乘积矢量量化器量化这些视频块.
  • 融合连续区域特性和背景学习模型的显著计算 下载:82 浏览:451
  • 纪超1 黄新波1 刘慧英2 张慧莹1 邢小强1 《人工智能研究》 2018年8期
  • 摘要:
    为了提高显著性模型的计算效率,提出基于连续区域特性和背景学习的模型,分别提取图像的显著区域,并进行融合.首先计算区域显著目标像素与周围像素位置的距离,提出基于贝叶斯的区域显著性对比的度量方法.然后采用连续性区域合并,合并空洞区域与其最相似的邻居区域.之后采用3种典型的显著性算法处理同一幅图像,得到不同的显著特征图,采用反差法得到各特征图的背景,建立混合高斯背景模型,加权学习合成背景图,再与原图作差得到前景显著区域.最后结合细胞调节规律融合得到的显著区域.在SED1、ASD图像库中测试文中算法,所得的F-measure、平均误差都较优.
加入编委加入审稿人
人工智能研究  期刊指标
出版年份 2018-2025
发文量 672
访问量 127852
下载量 28651
总被引次数 371
影响因子 0.752
为你推荐