人工智能研究

人工智能研究

《人工智能研究》系开放获取期刊,主要围绕人工智能领域,关注产业政策,报道研究前沿,传播技术趋势,刊载应用案例,推动成果转化,服务我国制造业转型升级发展。本刊支持思想创新、学术创新,倡导科学,繁荣学术,集学术性、思想性为一体,旨在给世界范围内的科学家、学者、科研人员提供一个传播、分享和讨论人工智能领域内不同方向问题与成果的学术交流平台。
ISSN: 3078-9753
qikan15@ccnpub.com
(邮箱投稿时,请说明投稿期刊名)

《人工智能研究》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。



提示文字!

注:我们将于1~7个工作日告知您审稿结果,请耐心等待;

您也可以在官网首页点击“查看投稿进度”输入文章题目,查询稿件实时进程。

基于多目标优化策略的在线学习资源推荐方法 下载:72 浏览:394
摘要:
目前在线学习资源推荐较多采用单目标转化方法,推荐过程中对学习者偏好考虑相对不足,影响学习资源推荐精度.针对上述问题,文中提出基于多目标优化策略的在线学习资源推荐模型(MOSRAM),在学习者规划时间内,以同时获得学习者对学习资源类型偏好度最大和难度水平适应度最佳为优化目标,设计具有向邻居均值学习能力和探索新区域能力的多目标粒子群优化算法(NEMOPSO),提出以MOSRAM为核心的在线学习资源推荐方法(NEMOPSO-RA).不同问题规模下融合经典多目标优化算法的推荐方法对比实验表明,NEMOPSO-RA可以有效提高在线学习资源的推荐精度和推荐性能.
基于图卷积网络和自编码器的半监督网络表示学习模型 下载:73 浏览:415
摘要:
为了保留网络结构信息和节点特征信息,结合图卷积神经网络(GCN)和自编码器(AE),提出可扩展的半监督深度网络表示学习模型(Semi-GCNAE).利用GCN捕获节点的K阶邻域中所有节点的结构和特征信息,并将捕获的信息作为AE的输入.AE对GCN捕获的K阶邻域信息进行特征提取和非线性降维,并结合Laplacian特征映射保留节点的团簇结构信息.引入集成学习方法联合训练GCN和AE,使模型习得的节点低维向量表示能同时保留网络结构信息和节点特征信息.在5个真实数据集上的广泛评估表明,文中模型习得的节点低维向量表示可以有效保留网络的结构和节点特征信息,并在节点分类、可视化和网络重构任务上性能较优.
基于维度扩展和重排的类圆映射可视化聚类方法 下载:64 浏览:381
摘要:
现有的径向布局可视化方法无法有效捕获高维数据的非线性结构.因此,文中提出基于维度扩展和重排的类圆映射可视化聚类方法.利用近邻传播聚类算法和多目标聚类可视化评价指标对高维数据进行维度扩展,然后对扩展后的高维数据进行维度相关性重排,最后利用类圆映射机制降维至二维可视化空间,实现高维数据有效可视化聚类.实验表明,文中提出的维度扩展和重排策略能有效提高类圆映射可视化方法聚类效果,其中的维度扩展策略也能显著提高其它径向布局可视化方法聚类效果,泛化性能较好.此外,相比同类方法,文中方法在可视化聚类准确度、拓扑保持、Dunn指数及效果上优势明显.

版权所有 © 2025 世纪中文出版社  京ICP备2024086036号-2