人工智能研究
人工智能研究
《人工智能研究》系开放获取期刊,主要围绕人工智能领域,关注产业政策,报道研究前沿,传播技术趋势,刊载应用案例,推动成果转化,服务我国制造业转型升级发展。本刊支持思想创新、学术创新,倡导科学,繁荣学术,集学术性、思想性为一体,旨在给世界范围内的科学家、学者、科研人员提供一个传播、分享和讨论人工智能领域内不同方向问题与成果的学术交流平台。

ISSN: 3078-9753

《人工智能研究》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。



提示文字!

注:我们将于1~7个工作日告知您审稿结果,请耐心等待;

您也可以在官网首页点击“查看投稿进度”输入文章题目,查询稿件实时进程。


  • 基于类属特征和实例相关性的多标签分类算法 下载:47 浏览:363
  • 张永 刘浩科 张洁 《人工智能研究》 2020年9期
  • 摘要:
    学习类属特征方法为每个标签选择特有特征并考虑成对标签的相关性以降低维度,可有效解决多标签分类遇到的维度过大问题,但缺乏对实例相关性的考虑.针对此问题,文中提出基于类属特征和实例相关性的多标签分类算法,不仅考虑标签相关性还考虑实例特征的相关性.通过构建相似性图,学习实例特征空间的相似性.在8个数据集上的实验表明,文中算法可有效提取类属特征,具有较好的分类性能.
  • 基于稀疏字典的李群机器学习算法 下载:44 浏览:367
  • 熊啸东 李凡长 王邦军 梁合兰 《人工智能研究》 2020年9期
  • 摘要:
    李群机器学习理论被广泛应用于图像集分类中的数据表示和处理,并获得较优结果.由此,文中提出基于稀疏字典的李群机器学习算法.首先使用协方差矩阵对图像集建模,分析协方差矩阵构成的李群结构,应用对数映射将数据映射到线性空间中,得到数据的距离矩阵.再使用路标多维缩放对数据进行降维处理,降低运算成本.最后,使用带费舍尔判别字典学习进行分类.在YTC数据集上的实验证明文中算法具有良好的鲁棒性和准确率.
  • 视觉回环检测的多约束深度距离学习方法 下载:48 浏览:360
  • 陈良 金晟 杨慧 高瑜 孙荣川 孙立宁 ​ 《人工智能研究》 2020年9期
  • 摘要:
    在强场景变换下的视觉回环检测问题中,已有深度学习方法提取的特征描述子区分度不佳.针对此问题,文中深入分析多约束距离关系,提出视觉回环检测的多约束深度距离学习方法.首先,利用任意的卷积神经网络将原始图像映射为低维空间的特征描述子.然后,提出多约束损失函数,约束特征描述子之间的距离关系,并在线自动构造多约束训练样本集,提取更有区分度的低维特征.在New College、TUM数据集上的实验表明,文中方法提升强场景变化下回环检测的性能.
  • 基于字词特征自注意力学习的社交媒体文本分类方法 下载:43 浏览:356
  • 王晓莉1 叶东毅2 《人工智能研究》 2020年9期
  • 摘要:
    社交媒体文本中突出的长尾效应和过量的词典外词汇(OOV)导致严重的特征稀疏问题,影响分类模型的准确率.针对此问题,文中提出基于字词特征自注意力学习的社交媒体文本分类方法.在字级别构建全局特征,用于学习文本中各词的注意力权值分布.改进现有的多头注意力机制,降低参数规模和计算复杂度.为了更好地分析字词特征融合的作用,提出OOV词汇敏感度,用于衡量不同类型的特征受OOV词汇的影响.多组社交媒体文本分类任务的实验表明,文中方法在融合字特征和词特征方面的有效性与分类准确度均有较明显的提升.此外,OOV词汇敏感度指标的量化结果验证文中方法是可行有效的.
加入编委加入审稿人
人工智能研究  期刊指标
出版年份 2018-2025
发文量 672
访问量 127852
下载量 28651
总被引次数 371
影响因子 0.752
为你推荐