中文研究
中文研究
《中文研究》系开放获取期刊,本刊旨在为从事语言文字研究的教学、科研工作者及语言文字爱好者提供优秀的精神产品。以传承文明,传承学术为使命,提倡学术创新,反映国内外本学科的最新研究成果。以繁荣人文社会科学研究,服务学科建设与发展,提升社会精神文明生态为办刊方针。

ISSN: 3007-9896

《中文研究》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。



提示文字!

注:我们将于1~7个工作日告知您审稿结果,请耐心等待;

您也可以在官网首页点击“查看投稿进度”输入文章题目,查询稿件实时进程。


  • 维吾尔语词缀变体搭配规则研究及算法实现 下载:28 浏览:409
  • 艾孜麦提·艾尼瓦尔1,2,3 董军1,3 李晓1,3 《中文研究》 2018年12期
  • 摘要:
    该文介绍了维吾尔语词干结构特征、词缀结构特征及维吾尔语语音和谐律;以维吾尔语语音和谐律为基础,在充分考虑基本搭配规则和特殊规则的前提下,提出一种基于词干、词缀结构特征的维吾尔语词缀变体搭配算法;验证词干、词缀结构特征提取的正确性和完整性,并对500个名词词干和300个动词词干进行词缀变体搭配,分别生成9 000个名词和37 800个动词。借助维吾尔语文字校对系统和人工验证的方法,对生成的所有单词进行词缀变体搭配准确性验证;实验结果表明,名词和动词词干搭配词缀准确率分别为98.40%和96.49%,整体搭配准确率为96.86%;最后对搭配错误原因进行了分析。
  • 基于条件随机场的方志古籍别名自动抽取模型构建 下载:34 浏览:430
  • 李娜 《中文研究》 2018年12期
  • 摘要:
    近年来,我国数字图书馆发展迅速,为馆藏资源的深度挖掘和利用提供了基础。该文以数字化的方志古籍为研究语料,在全文人工标注的基础上,通过分析物产别名的内外部特征,构建基于条件随机场的别名自动抽取模型,精确率达到了93.52%。实验结果表明,条件随机场模型能够较好的应用于方志类古籍内容挖掘,为数字图书馆资源利用提供借鉴。
  • 基于小波分析的特征提取文本分类方法研究 下载:61 浏览:321
  • 朱晋1 怀丽波1 崔荣一1 尹慧2 《中文研究》 2018年12期
  • 摘要:
    该文提出了基于小波分析的文本特征提取方法,对传统TF-IDF向量空间模型下的特征向量进行了该文的小波变换、逆小波变换。使用KNN分类方法检验这两空间下的文本分类准确率。实验结果表明,该文的小波变换方法在减少了TF-IDF向量空间模型近一半的维度下在各种实验条件中都能和向量空间模型保持一致的分类准确率;该文的逆小波变换方法在大幅度降低TF-IDF向量空间模型维度的基础上,同实验中其他特征提取方法相比,在特定条件下有着卓越的特定文本类别分类优势,这也在一定程度上检验了压缩感知理论的正确合理性。
  • 基于BiLSTM-CRF模型的汉语否定信息识别 下载:17 浏览:190
  • 1.重庆大学计算机学院;2.上海拍拍贷金融信息服务有限公司 《中文研究》 2018年12期
  • 摘要:
    否定信息识别是将自然语言中的肯定信息与否定信息分离,它对信息检索、文本挖掘、情感分析等都有重要作用。该文主要对汉语否定信息中的触发词识别和覆盖域识别进行研究,采用双向长短期记忆网络结合条件随机场(BiLSTM-CRF)为模型,预训练的词向量为输入特征对触发词进行识别,在此基础上添加已知触发词特征对覆盖域进行识别。中文否定与不确定信息语料上,触发词识别取得F1值为91.03%,覆盖域识别在该语料的子语料财经新闻上取得F1值最高为73.91%。实验结果表明,这一模型在汉语否定触发词识别和覆盖域识别上取得的效果优于CRF模型和BiLSTM模型。
  • 基于细粒度词表示的命名实体识别研究 下载:26 浏览:325
  • 林广和1 张绍武1,2 林鸿飞1 《中文研究》 2018年12期
  • 摘要:
    命名实体识别(NER)是自然语言处理中的一项基础任务,其性能的优劣极大地影响着关系抽取、语义角色标注等后续任务。传统的统计模型特征设计难度大、领域适应性差,一些神经网络模型则忽略了词本身所具有的形态学信息。针对上述问题,该文构建了一种基于细粒度词表示的端到端模型(Finger-BiLSTM-CRF)来进行命名实体识别任务。该文首先提出一种基于注意力机制的字符级词表示模型Finger来融合形态学信息和单词的字符信息,然后将Finger与BiLSTM-CRF模型联合进行实体识别,最终该方法以端到端、无任何特征工程的方式在CoNLL 2003数据集上取得了F1为91.09%的结果。实验表明,该文设计的Finger模型显著提升NER系统的召回率,从而使得模型的识别能力显著提升。
加入编委加入审稿人
中文研究  期刊指标
出版年份 2018-2025
发文量 689
访问量 130587
下载量 39862
总被引次数 406
影响因子 1.192
为你推荐