最新录用
矿山智能巡检机器人路径规划与危险识别算法优化
下载:15 浏览:72
摘要:
本文针对矿山智能巡检机器人在路径规划和危险识别算法方面进行了优化研究。通过分析传统路径规划算法如A算法、遗传算法(GA)和蚁群算法(ACO)在矿山复杂环境中的局限性,提出了结合多种算法优势的改进方法。在路径规划方面,采用融合优化遗传算法和变步长蚁群算法的方法,显著提高了全局最优解的收敛速度和搜索精度。在危险识别方面,利用深度学习和图像处理技术,结合卷积神经网络(CNN)和目标检测算法(如YOLO和Faster R-CNN),有效提升了危险源识别的准确率。此外,针对矿山环境的实时性和稳定性挑战,引入了基于深度强化学习的Actor-Critic算法和改进的动态窗口算法(DWA),确保了算法的高效运行和鲁棒性。实验结果表明,优化后的算法在复杂矿山环境中表现出良好的性能,为矿山安全生产提供了技术支持。
AI强化学习的火电厂锅炉燃烧优化控制研究——多目标协同调控
下载:11 浏览:199
基于深度强化学习的机电系统自适应控制策略研究
下载:18 浏览:65
基于强化学习的自动驾驶路径规划算法研究
下载:9 浏览:56
反无人机集群智能化防空协同系统中的数据融合与决策优化研究
下载:62 浏览:923
基于强化学习的自适应控制算法在无人机飞行中的应用
下载:81 浏览:1217
基于深度强化学习的无人作战决策优化研究综述
下载:115 浏览:1427
摘要:
无人机在作战中的广泛应用,其智能化决策成为关键挑战。本文提出基于深度强化学习(Deep Reinforcement Learning,DRL)的决策优化方法,应对无人机作战中的复杂性和不确定性。首先介绍了深度强化学习(Deep Reinforcement Learning,简称DRL),说明深度强化学习在该领域的研究优势,然后对深度强化学习算法在无人作战决策的主要方向——协同路径规划与任务分配的文献进行分析。提出采用近端策略优化(Proximal Policy Optimization,简称PPO)算法和规则算法结合的方式来解决无人机作战决策中任务分配和路径规划问题,梳理了基于近端策略优化算法的无人作战决策方法流程。最后,对文章进行总结并对未来深度强化学习在无人作战决策的发展方向作出展望。




