检 索
学术期刊
切换导航
首页
文章
期刊
投稿
首发
学术会议
图书中心
新闻
新闻动态
科学前沿
合作
我们
一封信
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
我要投稿
查看投稿进度
学术期刊
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
在线客服
客服电话:
400-188-5008
客服邮箱:
service@ccnpub.com
投诉举报:
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享
请选择
目标期刊
首页
期刊
文章
基于区间2-型模糊度量的粗糙K-means聚类算法
下载:
89
浏览:
490
逯瑞强1
马福民1
张腾飞2
《人工智能研究》
2018年5期
摘要:
现有粗糙K-means聚类算法及系列改进、衍生算法均是从不同角度描述交叉类簇边界区域中的不确定性数据对象,却忽视类簇间规模的不均衡对聚类迭代过程及结果的影响.文中引入区间2-型模糊集的概念度量类簇的边界区域数据对象,提出基于区间2-型模糊度量的粗糙K-means聚类算法.首先根据类簇的数据分布生成边界区域样本对交叉类簇的隶属度区间,体现数据样本的空间分布信息.然后进一步考虑类簇的数据样本规模,在隶属度区间的基础上自适应地调整边界区域的样本对交叉类簇的影响系数.文中算法削弱边界区域对较小规模类簇的中心均值迭代的不利影响,提高聚类精度.在人工数据集及UCI标准数据集的测试分析验证算法的有效性.
[1/1]
|<
<
1
>
>|
在线客服::
点击联系客服
联系电话::
400-188-5008
客服邮箱::
service@ccnpub.com
投诉举报::
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享