检 索
学术期刊
切换导航
首页
文章
期刊
投稿
首发
学术会议
图书中心
新闻
新闻动态
科学前沿
合作
我们
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
我要投稿
查看投稿进度
学术期刊
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
在线客服
客服电话:
400-188-5008
客服邮箱:
service@ccnpub.com
投诉举报:
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享
请选择
目标期刊
首页
期刊
文章
基于最小风险贝叶斯决策理论的在线评价排名方法研究
下载:
33
浏览:
419
田博 陈舜杰 周雯
《管理与科学》
2018年5期
摘要:
随着电商模式不断发展和完善,在电商平台上出售的商品种类持续增加。消费者在做出购买决策之前,通常会参考其他消费者发表的在线评论。目前,电商客户评论中的好评与差评的权重风险是相等的,当顾客进行产品购买时会存在评论误判风险。针对好评与差评的权重风险相等的不足,本文提出了一种基于最小风险贝叶斯决策的评价排名方法。提出的方法首先利用网络爬虫语言抓取所有商品累计评论,形成TXT文档;然后根据已有的停用词词典,对生成的TXT文档进行文本预处理,并进行关键词的提取,通过关键词的分类将每一条评论生成一个文档,获得关键词权重;最后利用最小风险贝叶斯决策模型获得风险权重排名,并以天猫为例,与已有排名数据进行比较。提出方法新获得的排名为最小风险权重下的商家排名,有助于顾客在进行高风险商品购买决策时根据不同风险偏好,获得最优购买决策。
[1/1]
|<
<
1
>
>|
在线客服::
点击联系客服
联系电话::
400-188-5008
客服邮箱::
service@ccnpub.com
投诉举报::
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享