请选择 目标期刊

基于深度学习的改进贝叶斯网络入侵检测算法 下载:56 浏览:455

孙惠丽1 陈维华2 刘东朝2 ​ 《软件工程研究》 2019年9期

摘要:
针对传统的朴素贝叶斯网络入侵检测技术存在训练数据集中属性冗余的问题,以及没有考虑到网络环境的变化导致贝叶斯网络结构改变的问题,提出一种结合深度学习和滑动窗口改进贝叶斯网络入侵检测方法。利用深度学习提取特征属性,降低数据集维数;采用滑动窗口技术实时更新贝叶斯网络参数,并利用特征属性的互信息计算各属性之间的相对欧氏距离,根据相对欧氏距离的大小及时更新贝叶斯网络,以提高检测率。实验结果表明,改进后的贝叶斯网络能够提高运算效率和检测率。
[1/1]
在线客服::点击联系客服
联系电话::400-188-5008
客服邮箱::service@ccnpub.com
投诉举报::feedback@ccnpub.com
人工客服

工作时间(9:00-18:00)
官方公众号

科技成果·全球共享