请选择 目标期刊

基于改进YOLO和迁移学习的水下鱼类目标实时检测 下载:72 浏览:380

李庆忠 李宜兵 牛炯 《人工智能研究》 2019年7期

摘要:
为了实现非限制环境中水下机器人基于视频图像的水下鱼类目标快速检测,提出基于改进YOLO和迁移学习的水下鱼类目标实时检测算法.针对YOLO网络的不足,设计适合水下机器人嵌入式系统计算能力的精简YOLO网络(Underwater-YOLO).利用迁移学习方法训练Underwater-YOLO网络,克服海底鱼类已知样本集有限的限制.利用基于限制对比度自适应直方图均衡化的水下图像增强预处理算法,克服水下图像的降质问题.利用基于帧间图像结构相似度的选择性网络前向计算策略,提高视频帧检测速率.实验表明,文中算法能实现在非限制环境下海底鱼类目标的实时检测.相比YOLO,文中算法对海底鱼类小目标和重叠目标具有更好的检测性能.
[1/1]
在线客服::点击联系客服
联系电话::400-188-5008
客服邮箱::service@ccnpub.com
投诉举报::feedback@ccnpub.com
人工客服

工作时间(9:00-18:00)
官方公众号

科技成果·全球共享