检 索
学术期刊
切换导航
首页
文章
期刊
投稿
首发
学术会议
图书中心
新闻
新闻动态
科学前沿
合作
我们
一封信
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
我要投稿
查看投稿进度
学术期刊
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
在线客服
客服电话:
400-188-5008
客服邮箱:
service@ccnpub.com
投诉举报:
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享
请选择
目标期刊
首页
期刊
文章
基于局部最优分析的纺织品瑕疵检测方法
下载:
97
浏览:
499
刘威1
常兴治2
梁久祯1
贾靓1
顾程熙1
《人工智能研究》
2018年2期
摘要:
针对复杂的含有周期变化图案的纺织品瑕疵检测,提出改进Markov随机场模型的无监督纺织品瑕疵检测方法.应用随机场实现周期性纺织品图像的瑕疵检测,利用Markov邻域特性,综合判断瑕疵区域.结合周期图像分割,确定Markov随机场最小图像块计算单元,降低算法的计算复杂度.在随机场势函数定义中,综合考虑相邻图像块的差异特性,结合Markov随机场的全局性判断瑕疵点的位置.引入模糊相似关系矩阵概念,求解改进后的模型参数,使所有图像块的局部能量达到最优.实验表明,文中方法对样本的查全率较高.
[1/1]
|<
<
1
>
>|
在线客服::
点击联系客服
联系电话::
400-188-5008
客服邮箱::
service@ccnpub.com
投诉举报::
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享