检 索
学术期刊
切换导航
首页
文章
期刊
投稿
首发
学术会议
图书中心
新闻
新闻动态
科学前沿
合作
我们
一封信
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
我要投稿
查看投稿进度
学术期刊
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
在线客服
客服电话:
400-188-5008
客服邮箱:
service@ccnpub.com
投诉举报:
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享
请选择
目标期刊
首页
期刊
文章
基于深度学习和迁移学习的领域自适应中文分词
下载:
30
浏览:
409
成于思1 施云涛2
《中文研究》
2019年3期
摘要:
为了提高专业领域中文分词性能,以及弥补专业领域大规模标注语料难以获取的不足,该文提出基于深度学习以及迁移学习的领域自适应分词方法。首先,构建包含词典特征的基于深度学习的双向长短期记忆条件随机场(BI-LSTM-CRF)分词模型,在通用领域分词语料上训练得到模型参数;接着,以建设工程法律领域文本作为小规模分词训练语料,对通用领域语料的BI-LSTM-CRF分词模型进行参数微调,同时在模型的词典特征中加入领域词典。实验结果表明,迁移学习减少领域分词模型的迭代次数,同时,与通用领域的BI-LSTM-CRF模型相比,该文提出的分词方法在工程法律领域的分词结果F1值提高了7.02%,与预测时加入领域词典的BI-LSTM-CRF模型相比,分词结果的F1值提高了4.22%。该文提出的分词模型可以减少分词的领域训练语料的标注,同时实现分词模型跨领域的迁移。
[1/1]
|<
<
1
>
>|
在线客服::
点击联系客服
联系电话::
400-188-5008
客服邮箱::
service@ccnpub.com
投诉举报::
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享