检 索
学术期刊
切换导航
首页
文章
期刊
投稿
首发
学术会议
图书中心
新闻
新闻动态
科学前沿
合作
我们
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
我要投稿
查看投稿进度
学术期刊
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
在线客服
客服电话:
400-188-5008
客服邮箱:
service@ccnpub.com
投诉举报:
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享
请选择
目标期刊
首页
期刊
文章
融合多特征的基于远程监督的中文领域实体关系抽取
下载:
72
浏览:
390
王斌1 郭剑毅1 线岩团2 王红斌2 余正涛2
《人工智能研究》
2019年4期
摘要:
针对从未标记的文本中抽取中文领域实体关系的问题,文中提出基于远程监督的领域实体属性关系抽取的混合方法,利用知识库中已有结构化的关系三元组,从自然语言文本中自动获取训练语料.针对远程监督方法标注数据存在大量噪声的问题,采用隐含狄利克雷分布主题模型抽取主题关键词,再与关系类型进行相似度计算和对关键词模式匹配进行去噪.最后提取词性特征、依存关系特征和短语句法树特征,并进行融合,训练关系抽取模型.实验表明,3种特征融合的F值较高,抽取性能较好.
[1/1]
|<
<
1
>
>|
在线客服::
点击联系客服
联系电话::
400-188-5008
客服邮箱::
service@ccnpub.com
投诉举报::
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享