请选择 目标期刊

基于多重隐语义表示模型的旅游路线挖掘 下载:72 浏览:461

孙彦鹏1 古天龙2 宾辰忠2 孙磊2 《人工智能研究》 2018年8期

摘要:
针对用户个性化旅游行为过程的挖掘与景点推荐问题,提出多重隐语义旅游路线表示模型(MLSTR-RM).MLSTR-RM考虑不同上下文对用户旅游路线的影响,高效挖掘旅游路线中丰富的隐语义.首先确定模型中不同上下文包含的隐语义信息,然后通过负采样的方式训练模型参数,最后基于MLSTR-RM模型设计个性化景点推荐方法.在真实数据集上的实验表明文中模型的有效性.

基于机器学习的代码搜索方法综述 下载:55 浏览:447

张开乐 《天线研究》 2020年1期

摘要:
随着互联网行业的快速发展以及开源社区、开源软件的兴起,越来越多的高质量代码可供软件开发人员选择。如何快速并准确地搜索到想要的代码,是软件工程领域中一个重要的研究方向,对软件开发以及代码重用有着重要意义。由深度神经网络模型的文本表示驱动,自然语言处理(NLP)领域在不同水平的语义理解上取得了巨大的进步。在某种意义上,由于源代码是文本数据,机器学习方法为代码搜索提供了新的思路。首先对利用机器学习方法进行代码搜索研究的分析并讨论;其次,针对多种方式结合的代码搜索方法进行展开讨论;最后指出在利用代码的统计特性上未来的几个研究方向。
[1/1]
在线客服::点击联系客服
联系电话::400-188-5008
客服邮箱::service@ccnpub.com
投诉举报::feedback@ccnpub.com
人工客服

工作时间(9:00-18:00)
官方公众号

科技成果·全球共享