检 索
学术期刊
切换导航
首页
文章
期刊
投稿
首发
学术会议
图书中心
新闻
新闻动态
科学前沿
合作
我们
一封信
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
我要投稿
查看投稿进度
学术期刊
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
在线客服
客服电话:
400-188-5008
客服邮箱:
service@ccnpub.com
投诉举报:
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享
请选择
目标期刊
首页
期刊
文章
融合连续区域特性和背景学习模型的显著计算
下载:
82
浏览:
462
纪超1
黄新波1
刘慧英2
张慧莹1
邢小强1
《人工智能研究》
2018年8期
摘要:
为了提高显著性模型的计算效率,提出基于连续区域特性和背景学习的模型,分别提取图像的显著区域,并进行融合.首先计算区域显著目标像素与周围像素位置的距离,提出基于贝叶斯的区域显著性对比的度量方法.然后采用连续性区域合并,合并空洞区域与其最相似的邻居区域.之后采用3种典型的显著性算法处理同一幅图像,得到不同的显著特征图,采用反差法得到各特征图的背景,建立混合高斯背景模型,加权学习合成背景图,再与原图作差得到前景显著区域.最后结合细胞调节规律融合得到的显著区域.在SED1、ASD图像库中测试文中算法,所得的F-measure、平均误差都较优.
[1/1]
|<
<
1
>
>|
在线客服::
点击联系客服
联系电话::
400-188-5008
客服邮箱::
service@ccnpub.com
投诉举报::
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享