检 索
学术期刊
切换导航
首页
文章
期刊
投稿
首发
学术会议
图书中心
新闻
新闻动态
科学前沿
合作
我们
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
我要投稿
查看投稿进度
学术期刊
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
在线客服
客服电话:
400-188-5008
客服邮箱:
service@ccnpub.com
投诉举报:
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享
请选择
目标期刊
首页
期刊
文章
基于T-ACO算法的旅行商问题求解优化研究
下载:
52
浏览:
388
费腾1 赵斌2 黄俊东1 刘泽田1
《软件工程研究》
2020年4期
摘要:
为了有效求解旅行商问题,本文提出了一种基于T分布的改进蚁群算法。针对基本蚁群算法易陷入局部最优、寻优精度低等缺陷,在优化过程中,在信息素更新原则上,引入T分布,有益于基本蚁群算法弥补其不足。在基本蚁群算法中增加了信息素的突变,使得蚂蚁群的多样性提高,从而跳出局部最优的限制。与此同时,T-ACO算法在旅行商问题搜寻精度与收敛速度方面也得到了提高。对T-ACO求解旅行商问题的性能进行了实验仿真,实验分析表明,T-ACO算法有更好的寻优能力。
[1/1]
|<
<
1
>
>|
在线客服::
点击联系客服
联系电话::
400-188-5008
客服邮箱::
service@ccnpub.com
投诉举报::
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享