检 索
学术期刊
切换导航
首页
文章
期刊
投稿
首发
学术会议
图书中心
新闻
新闻动态
科学前沿
合作
我们
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
我要投稿
查看投稿进度
学术期刊
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
在线客服
客服电话:
400-188-5008
客服邮箱:
service@ccnpub.com
投诉举报:
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享
请选择
目标期刊
首页
期刊
文章
库车前陆盆地“三超”气井产能预测方法对比
下载:
58
浏览:
426
马群 王胜军 蒋国军 何飞 郭宇恒 胡家荣
《天然气进展》
2018年7期
摘要:
气井产能预测是气藏开发过程中的重要工作之一,在气田的整体评价和高效开发进程中具有很强的预见性。而对于"三超"气井来说,进行产能测试面临着较大困难,因此寻找一种较为方便的产能预测方法尤为重要。基于此,研究以气井静态资料、探井资料为依据,建立了多元线性回归、BP神经网络、支持向量机3种预测模型,通过对上述3种产能模型预测结果及3种预测方法的优缺点综合对比分析可知,基于支持向量机的气井产能预测模型预测精度较高、预测结果稳定、可操作性强,是一种适合库车前陆盆地"三超"气井产能预测的数据建模方法。
[1/1]
|<
<
1
>
>|
在线客服::
点击联系客服
联系电话::
400-188-5008
客服邮箱::
service@ccnpub.com
投诉举报::
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享