请选择 目标期刊

深度强化学习理论及其应用综述 下载:73 浏览:425

万里鹏 兰旭光 张翰博 郑南宁 《人工智能研究》 2019年1期

摘要:
一方面,随着深度强化学习理论和应用研究不断深入,其在游戏、机器人控制、对话系统、自动驾驶等领域发挥重要作用;另一方面,深度强化学习受到探索-利用困境、奖励稀疏、样本采集困难、稳定性较差等问题的限制,存在很多不足.面对这些问题,研究者们提出各种各样的解决方法,新的理论进一步推动深度强化学习的发展,在弥补缺陷的同时扩展强化学习的研究领域,延伸出模仿学习、分层强化学习、元学习等新的研究方向.文中从深度强化学习的理论、困难、应用及发展前景等方面对其进行探讨.

深度强化学习理论及其应用综述 下载:79 浏览:430

万里鹏 兰旭光 张翰博 郑南宁 《人工智能研究》 2019年1期

摘要:
一方面,随着深度强化学习理论和应用研究不断深入,其在游戏、机器人控制、对话系统、自动驾驶等领域发挥重要作用;另一方面,深度强化学习受到探索-利用困境、奖励稀疏、样本采集困难、稳定性较差等问题的限制,存在很多不足.面对这些问题,研究者们提出各种各样的解决方法,新的理论进一步推动深度强化学习的发展,在弥补缺陷的同时扩展强化学习的研究领域,延伸出模仿学习、分层强化学习、元学习等新的研究方向.文中从深度强化学习的理论、困难、应用及发展前景等方面对其进行探讨.

基于自适应码率分配的压缩传感深度视频编码方法 下载:79 浏览:460

王康1 兰旭光1 李翔伟2 《人工智能研究》 2018年8期

摘要:
压缩传感深度视频(CSDV)是由深度视频经过压缩得到,它的冗余信息仍然巨大,由此,文中提出基于高斯混合模型和边缘码率分配的深度视频编码方法.在时域方向上,使用压缩传感,压缩八帧深度视频,得到一帧CSDV图像.为了减小量化的计算复杂度,将一帧CSDV图像分割成一系列大小相同且互不重合的视频块,使用Canny算子作为边界提取工具提取视频块的边界.根据每个视频块中非零像素所占的百分比,给不同的视频块分配不同的比特数.在模型中,使用高斯混合模型建模这些视频块,用于设计乘积矢量量化器,再使用乘积矢量量化器量化这些视频块.
[1/1]
在线客服::点击联系客服
联系电话::400-188-5008
客服邮箱::service@ccnpub.com
投诉举报::feedback@ccnpub.com
人工客服

工作时间(9:00-18:00)
官方公众号

科技成果·全球共享