检 索
学术期刊
切换导航
首页
文章
期刊
投稿
首发
学术会议
图书中心
新闻
新闻动态
科学前沿
合作
我们
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
我要投稿
查看投稿进度
学术期刊
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
在线客服
客服电话:
400-188-5008
客服邮箱:
service@ccnpub.com
投诉举报:
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享
请选择
目标期刊
首页
期刊
文章
国产高分辨率遥感数据城市绿地提取研究
下载:
83
浏览:
486
刘培1,2 李莹2,3 马威4 张晓颖1,2
《测绘科学与技术》
2020年3期
摘要:
针对国产高分辨率遥感数据在城市绿地信息提取中分割尺度选择问题,选取国产高分一号(GF-1)和中巴地球资源卫星04星(CBERS-04)遥感数据,在数据融合的基础上,采用控制变量法选取影像分割与合并尺度进行绿地信息提取,通过信息提取精度评价确定最优分割尺度。实验结果表明,对于GF-1和CBERS-04国产遥感数据,面向对象的方法均优于基于像元的方法,其中5m分辨率CBERS-04数据,面向对象方法绿地提取精度为90.53%,基于像元方法绿地提取精度为86.54%,推荐分割尺度与合并尺度为(25,70);2m分辨率GF-1数据,面向对象方法绿地提取精度为97.09%,基于像元方法绿地提取精度为83.49%,推荐分割尺度与合并尺度为(45,80)。研究结果能够为国产高分遥感数据城区绿地信息提取和地物分类过程中尺度选择提供借鉴和支持。
[1/1]
|<
<
1
>
>|
在线客服::
点击联系客服
联系电话::
400-188-5008
客服邮箱::
service@ccnpub.com
投诉举报::
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享