请选择 目标期刊

T-Reader:一种基于自注意力机制的多任务深度阅读理解模型 下载:47 浏览:361

郑玉昆1 李丹2 范臻1 刘奕群1 张敏1 马少平1 《中文研究》 2018年10期

摘要:
该文介绍THUIR团队在"2018机器阅读理解技术竞赛"中的模型设计与实验结果。针对多文档机器阅读理解任务,设计了基于自注意力机制的多任务深度阅读理解模型T-Reader,在所有105支参赛队伍中取得了第八名的成绩。除文本信息外,提取了问题与段落精准匹配等特征作为模型输入;在模型的段落匹配阶段,采用跨段落的文档级自注意力机制,通过循环神经网络实现了跨文档的问题级信息交互;在答案范围预测阶段,通过进行段落排序引入强化学习的方法提升模型性能。
[1/1]
在线客服::点击联系客服
联系电话::400-188-5008
客服邮箱::service@ccnpub.com
投诉举报::feedback@ccnpub.com
人工客服

工作时间(9:00-18:00)
官方公众号

科技成果·全球共享