检 索
学术期刊
切换导航
首页
文章
期刊
投稿
首发
学术会议
图书中心
新闻
新闻动态
科学前沿
合作
我们
一封信
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
我要投稿
查看投稿进度
学术期刊
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
在线客服
客服电话:
400-188-5008
客服邮箱:
service@ccnpub.com
投诉举报:
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享
请选择
目标期刊
首页
期刊
文章
融合注意力LSTM的协同过滤推荐算法
下载:
17
浏览:
412
罗洋1
夏鸿斌1,2
刘渊1,2
《中文研究》
2019年10期
摘要:
针对传统协同过滤算法难以学习深层次用户和项目的隐表示,以及对文本信息不能充分提取单词之间的前后语义关系的问题,该文提出一种融合辅助信息与注意力长短期记忆网络的协同过滤推荐模型。首先,附加堆叠降噪自编码器利用评分信息和用户辅助信息提取用户潜在向量;其次,基于注意力机制的长短期记忆网络利用项目辅助信息来提取项目的潜在向量;最后,将用户与项目的潜在向量用于概率矩阵分解中,从而预测用户偏好。在两个真实数据集MovieLens-100k和MovieLens-1M上进行实验,采用RMSE和Recall指标进行评估。实验结果表明,该模型与其他相关推荐算法相比在推荐性能上有所提升。
[1/1]
|<
<
1
>
>|
在线客服::
点击联系客服
联系电话::
400-188-5008
客服邮箱::
service@ccnpub.com
投诉举报::
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享