请选择 目标期刊

基于新型卷积神经网络构建矿山灾害事件检测模型 下载:62 浏览:276

刘鹏1 魏卉子2 鹿晓龙2 刘明明3 《中文研究》 2020年4期

摘要:
事件检测属于自然语言处理的核心任务及难点之一,使用长短时记忆网络(LSTM)和卷积神经网络(CNN)进行的相关研究越来越广泛,但面对篇章级别的事件文本时,参数量庞大的LSTM与语义缺失明显的CNN导致模型检测准确性和收敛性均欠佳。该文结合迭代空洞卷积神经网络和高速神经网络,提出基于混合特征的高速迭代空洞卷积神经网络,力图优化深层模型训练中常见的梯度消失与爆炸现象,提取性能更优的篇章级文本特征。实验结果表明,该方法与当下主流的LSTM和CNN模型相比,矿山灾害事件检测效果更为理想,收敛性及训练效率也表现更优。

基于卡尔曼滤波改进的MTCNN网络人脸检测算法 下载:40 浏览:255

魏荣耀1 鲍士兼2 赵成林1 许方敏1 《无线电研究》 2020年7期

摘要:
针对真实视频流中的噪点、不可控的光照、人脸角度的偏转和面部遮挡及连续的人脸移动对人脸检测算法的准确性和实时性有很大影响的问题,提出一种结合卡尔曼滤波器与三级级联多任务级联卷积网络(MTCNN)深度学习网络的改进算法。该算法假设视频中人脸的运动是线性运动,通过卡尔曼滤波器预测下一帧中人脸中心点的位置,根据预测中心点位置向MTCNN网络提供下一帧推荐的检测区域,在下一帧中输入推荐区域,利用MTCNN的R-net和O-net进行再检测。通过实验验证,该算法相比原算法和其他算法在加噪情况下,保持准确率的同时提高了检测速率。

基于卷积网络的遥感图像建筑物提取技术研究 下载:87 浏览:485

付发 未建英 张丽娜 《软件工程研究》 2018年9期

摘要:
Mask RCNN是当前最高水平的实例分割算法,本文将该算法应用到高分辨率遥感图像建筑物提取中,提出了一种高效、准确的高分辨率遥感图像建筑物提取方法。首先,利用Tensorflow和Keras深度学习框架搭建Mask RCNN网络模型;然后,通过有监督学习方式在IAILD数据集上进行模型学习。利用训练出的模型对测试集进行建筑物提取实验,通过与基于KNN和SVM等建筑物提取方法对比可以看出,本文方法可以更加完整的、准确的提取出建筑物。采用m AP评价指标对实验结果进行定量评价,本文算法的查全率和查准率均大于对比算法,且多次实验中本文算法的m AP均在81%以上,验证了基于卷积网络的高分辨率遥感图像建筑物提取的有效性和准确性。

基于有效感受野的区域推荐网络 下载:42 浏览:359

张绳昱1,2 董士风2 焦林2 王琦进2 王红强2 《人工智能研究》 2020年10期

摘要:
基于卷积神经网络的目标检测方法通过优化区域推荐达到较高的检测精度.由此,文中提出基于有效感受野的区域推荐网络.在区域推荐网络上引入基于有效感受野的样本匹配方法,强化基于交叠比的样本匹配规则,增强特征信息在区域推荐生成时的表征能力,减少锚定框和区域推荐数目,简化锚定框参数设置.结合快速区域的卷积神经网络检测器后,在Pascal VOC数据集上的检测精度有所提升,这表明文中方法是有效的.

基于图卷积网络和自编码器的半监督网络表示学习模型 下载:73 浏览:398

王杰 张曦煌 《人工智能研究》 2019年9期

摘要:
为了保留网络结构信息和节点特征信息,结合图卷积神经网络(GCN)和自编码器(AE),提出可扩展的半监督深度网络表示学习模型(Semi-GCNAE).利用GCN捕获节点的K阶邻域中所有节点的结构和特征信息,并将捕获的信息作为AE的输入.AE对GCN捕获的K阶邻域信息进行特征提取和非线性降维,并结合Laplacian特征映射保留节点的团簇结构信息.引入集成学习方法联合训练GCN和AE,使模型习得的节点低维向量表示能同时保留网络结构信息和节点特征信息.在5个真实数据集上的广泛评估表明,文中模型习得的节点低维向量表示可以有效保留网络的结构和节点特征信息,并在节点分类、可视化和网络重构任务上性能较优.

基于时间卷积网络分位数回归的短期负荷概率密度预测方法 下载:83 浏览:425

庞昊1 高金峰1 杜耀恒2 《电网技术研究》 2020年11期

摘要:
为了获得电力系统短期负荷的概率性信息,将分位数回归理论与深度学习算法相结合,提出了一种基于时间卷积网络分位数回归的概率密度预测方法。首先利用距离相关系数衡量不同天气因素与短期负荷的相关性强弱,以此确定输入数据集合;其次通过融合注意力机制的时间卷积网络分位数回归算法预测不同分位数条件下的负荷值;最后利用核密度估计得到待测负荷的概率密度分布。采用中国华东某地的历史负荷数据验证分析,结果表明该方法可以细致刻画待测负荷的概率密度分布,其众数和中位数对预测负荷实际值具有参考意义。

基于深度卷积网络的目标检测综述 下载:79 浏览:474

吴帅1 徐勇1 赵东宁1,2 《人工智能研究》 2018年7期

摘要:
在基于区域的卷积神经网络提出后,深度卷积网络开始在目标检测领域普及,更快的基于区域的卷积神经网络将整个目标检测过程合成在一个统一的深度网络框架上.随后YOLO和SSD等目标检测框架的提出进一步提升目标检测的效率.文中系统总结基于深度网络的目标检测方法,归为2类:基于候选窗口的目标检测框架和基于回归的目标检测框架.基于候选窗口的目标检测框架首先需要在输入的图像上产生很多的候选窗口,然后对这些候选窗口进行判别.这里的判别包括:对窗口包含物体的类别(包括背景)进行判断、对窗口的位置进行回归.基于回归的目标检测方法将图像目标检测看作是一个回归的过程.在此基础上,在PASCALVOC和COCO等主流数据库上对比目前两类目标检测框架中的主流方法,分析两类方法各自的优势.最后根据当前深度网络目标检测方法的发展趋势,对目标检测方法未来的研究热点做出合理预测.
[1/1]
在线客服::点击联系客服
联系电话::400-188-5008
客服邮箱::service@ccnpub.com
投诉举报::feedback@ccnpub.com
人工客服

工作时间(9:00-18:00)
官方公众号

科技成果·全球共享