检 索
学术期刊
切换导航
首页
文章
期刊
投稿
首发
学术会议
图书中心
新闻
新闻动态
科学前沿
合作
我们
一封信
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
我要投稿
查看投稿进度
学术期刊
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
在线客服
客服电话:
400-188-5008
客服邮箱:
service@ccnpub.com
投诉举报:
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享
请选择
目标期刊
首页
期刊
文章
新能源功率预测算法优化研究
下载:
21
浏览:
223
史洁1
刘晓飞2
《发电技术与研究》
2019年1期
摘要:
以风能和太阳能为代表的新能源具有随机性、间歇性和波动性,对新能源发电功率进行预测是有效解决以上问题的途径。在确定性预测中充分考虑风电出力和预测模型特性,提出分段支持向量机(piecewisesupport vector machine,PSVM)和神经网络(neural network,NN)预测算法;充分考虑天气特征对光伏出力的影响,提出基于气象特性分析的光伏出力预测算法。通过若干风电场的算例分析,证明了上述几种预测模型的实用性,为功率预测的可靠性分析提供支持。
[1/1]
|<
<
1
>
>|
在线客服::
点击联系客服
联系电话::
400-188-5008
客服邮箱::
service@ccnpub.com
投诉举报::
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享