请选择 目标期刊

不同热解温度制备的水稻秸秆生物炭理化特性分析 下载:93 浏览:389

徐亮1 王豹祥2 汪健2 卢剑3 于晓娜1 伍德洋4 叶协锋1 刘晓涵1 李雪利5 《土壤研究》 2020年4期

摘要:
以不同热解温度(100~800℃)制备的水稻秸秆生物炭为研究对象,研究在不同热解温度下制成的生物炭的理化特性。结果表明,热解温度为100~300℃制成的水稻秸秆生物炭呈弱酸性,400℃以上时呈碱性;水稻秸秆生物炭表面碱性含氧官能团数量随着热解温度的升高而增加、酸性含氧官能团则减少;水稻秸秆生物炭中的官能团C=C、C-O-C、-OH和-C=O在较高的热解温度下发生缔合或消除,促进了芳香基团的形成;随着热解温度的升高,水稻秸秆生物炭的阳离子交换量(CEC)、比表面积、孔径、比孔容、氮气吸附量和颗粒表面的分型维数(D1)均先增加后降低,阳离子交换量(CEC)在300~500℃时、其它性状在400~600℃之间达到最大值;以不同热解温度制成的水稻秸秆生物炭颗粒的孔隙结构均以孔隙宽度2~50 nm的中孔为主。随热解温度的升高,水稻秸秆生物炭的产率逐渐降低;400~500℃炭化2 h,生物炭产率最高,其孔隙结构最为复杂,所以可以认为400~500℃是水稻秸秆炭化的最佳温度。

不同温度花生壳生物炭孔隙特征及其差异 下载:36 浏览:359

付仲毅1 于晓娜1 张晓帆1 李志鹏1 凌天孝1 周涵君1 孟琦1 张胜2 叶协锋1 《土壤研究》 2018年12期

摘要:
为评价花生壳生物炭农业与环境领域应用价值与潜力,该研究分别在100~800℃条件下制备花生壳生物炭,测定其孔隙参数,以期了解花生壳生物炭在不同热解温度条件下的孔结构变化规律。结果表明,在100~500℃条件下制备的花生壳生物炭以中孔和大孔为主,其吸附解析等温线为Ⅱ类吸附等温线,迟滞回线属于H3型,孔隙结构主要由狭缝孔构成;600~800℃条件下制备的生物炭以微孔为主,其吸附解析等温线为Ⅰ类吸附等温线,迟滞回线属于H4型,孔隙结构主要是锥形孔。当热解温度从100℃上升至600℃过程中,BET比表面积、比孔容均呈上升趋势,同时t-Plot微孔比表面积、t-Plot微孔孔容、中孔比表面积、中孔孔容也均在600℃时基本达到最高水平。花生壳生物炭的孔径分布随温度的变化非常明显,孔峰主要在3~5 nm处,100~600℃条件下峰值表现为升高趋势,600~800℃条件下峰值逐渐降低,与比表面积分布图结果相一致。花生壳生物炭孔隙表面分形维数D1和体积分形维数D2均在600~800℃条件下水平较高,高热解温度导致孔隙结构的复杂程度有所增加,生物炭表面更加粗糙。根据花生壳生物炭在不同热解温度条件下的孔结构变化规律,为花生壳生物炭制备及应用提供参考依据,有利于实现花生壳综合高效利用。
[1/1]
在线客服::点击联系客服
联系电话::400-188-5008
客服邮箱::service@ccnpub.com
投诉举报::feedback@ccnpub.com
人工客服

工作时间(9:00-18:00)
官方公众号

科技成果·全球共享