检 索
学术期刊
切换导航
首页
文章
期刊
投稿
首发
学术会议
图书中心
新闻
新闻动态
科学前沿
合作
我们
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
我要投稿
查看投稿进度
学术期刊
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
在线客服
客服电话:
400-188-5008
客服邮箱:
service@ccnpub.com
投诉举报:
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享
请选择
目标期刊
首页
期刊
文章
基于多识别区域融合的机动车驾驶员检测框架
下载:
88
浏览:
477
霍星1 檀结庆1 赵峰2 景永俊3 邵堃3
《人工智能研究》
2018年4期
摘要:
受光照条件、图像噪声和复杂背景等因素的影响,在机动车驾驶员检测过程中难以获取不同卡口图像下的驾驶员特征.为了解决上述问题,文中提出基于多识别区域融合的精准驾驶员位置检测框架,用于提高驾驶员识别率.首先基于图像梯度特征算法获得车牌定位,然后使用自适应方法得到车窗区域,最后采用多识别区域融合策略得到准确的驾驶员区域.在10个图像测试库上的测试表明,文中方法可以获得较高的识别率.
[1/1]
|<
<
1
>
>|
在线客服::
点击联系客服
联系电话::
400-188-5008
客服邮箱::
service@ccnpub.com
投诉举报::
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享