检 索
学术期刊
切换导航
首页
文章
期刊
投稿
首发
学术会议
图书中心
新闻
新闻动态
科学前沿
合作
我们
一封信
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
我要投稿
查看投稿进度
学术期刊
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
在线客服
客服电话:
400-188-5008
客服邮箱:
service@ccnpub.com
投诉举报:
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享
请选择
目标期刊
首页
期刊
文章
基于GoogLeNet Inception V3的迁移学习研究
下载:
41
浏览:
269
薛晨兴
张军
邢家源
《无线电研究》
2020年5期
摘要:
随着人工智能的再度崛起,使用深度学习模型进行图像分类的方法得到了广泛关注。针对典型深度卷积神经网络模型是在大型数据库和大算力的基础上进行训练得到的,但普通机器学习工作者很难拿到如此规模的数据集和算力现象,本文在GoogLeNet Inception V3深度学习模型的基础上,对GoogLeNet的特征提取模块进行迁移学习来训练特定的模型进行图像分类。实验结果表明,在硬件和数据集相对不足的条件下,采用迁移学习的策略可以高效地实现目标检测。
[1/1]
|<
<
1
>
>|
在线客服::
点击联系客服
联系电话::
400-188-5008
客服邮箱::
service@ccnpub.com
投诉举报::
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享