检 索
学术期刊
切换导航
首页
文章
期刊
投稿
首发
学术会议
图书中心
新闻
新闻动态
科学前沿
合作
我们
一封信
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
我要投稿
查看投稿进度
学术期刊
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
在线客服
客服电话:
400-188-5008
客服邮箱:
service@ccnpub.com
投诉举报:
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享
请选择
目标期刊
首页
期刊
文章
基于单句表示的篇章事件可信度识别方法
下载:
65
浏览:
456
张刘敏
张赟
李培峰
《中文研究》
2020年4期
摘要:
事件可信度表示文本中事件的真实状况,描述了事件是否是一个事实,或是一种可能还是不可能的情形,是自然语言处理中一个重要的语义任务。目前,大多数关于事件可信度分析的方法都集中在句子级,很少涉及篇章级。该文基于卷积神经网络,结合篇章中的句子级特征(包括句子的语义、语法以及线索词特征表示),使用对抗训练来识别篇章可信度。在中英文数据集上的结果显示,该文方法与最新的实验结果相比,微平均F1值分别提高了3.51%和6.02%,宏平均F1值分别提升了4.63%和9.97%。同时,该方法在训练速度上也提高了4倍。
[1/1]
|<
<
1
>
>|
在线客服::
点击联系客服
联系电话::
400-188-5008
客服邮箱::
service@ccnpub.com
投诉举报::
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享