检 索
学术期刊
切换导航
首页
文章
期刊
投稿
首发
学术会议
图书中心
新闻
新闻动态
科学前沿
合作
我们
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
我要投稿
查看投稿进度
学术期刊
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
在线客服
客服电话:
400-188-5008
客服邮箱:
service@ccnpub.com
投诉举报:
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享
请选择
目标期刊
首页
期刊
文章
基于词向量的中文事件发现及表示
下载:
82
浏览:
483
张斌 胡琳梅 侯磊 李涓子
《人工智能研究》
2018年4期
摘要:
已有的事件发现方法主要基于词频-逆文档频率文档表示,维度较高,语义稀疏,效率和准确率都较低,不适用于大规模在线新闻事件发现.因此,文中提出基于词向量的文档表示方法,降低文档表示维度,缓解语义稀疏问题,提高文档相似度计算效率和准确性.基于该文档表示方法,提出动态在线新闻聚类方法,用于在线新闻事件发现,同时提高事件发现的准确率和召回率.在标准数据集TDT4和真实数据集上的实验表明,相比当前通用的基线方法,文中方法在时间效率和事件质量上都有显著提高.
[1/1]
|<
<
1
>
>|
在线客服::
点击联系客服
联系电话::
400-188-5008
客服邮箱::
service@ccnpub.com
投诉举报::
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享