检 索
学术期刊
切换导航
首页
文章
期刊
投稿
首发
学术会议
图书中心
新闻
新闻动态
科学前沿
合作
我们
一封信
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
我要投稿
查看投稿进度
学术期刊
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
在线客服
客服电话:
400-188-5008
客服邮箱:
service@ccnpub.com
投诉举报:
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享
请选择
目标期刊
首页
期刊
文章
基于小波改进阈值去噪与EMD的滚动轴承故障诊断研究
下载:
79
浏览:
474
张珂 邢金鹏
《中国机械研究》
2018年6期
摘要:
针对传统阈值去噪方法在处理轴承故障信号时存在的不足,提出了基于小波改进阈值去噪与经验模态分解(Empirical Mode Decomposition,EMD)的滚动轴承故障信号的分析方法。为改善小波去噪产生的信号振荡和失真问题,构造了适用于滚动轴承振动信号的非线性阈值函数,并将其用为滚动轴承故障信号的噪声过滤器。采用经验模态分解将去噪后的信号分解成若干固有模态函数(Intrinsic Mode Function,IMF),并用统计分析的方法提取出谱峭度值、各固有模态函数与去噪信号之间的互相关系数最大的分量。最后,为了在频域内提取到故障特征频率,对抽取到的固有模态分量进行包络分析。仿真数据分析和模拟实验数据分析表明,所提方法可有效地提取轴承故障特征频率,实现轴承的故障诊断。
[1/1]
|<
<
1
>
>|
在线客服::
点击联系客服
联系电话::
400-188-5008
客服邮箱::
service@ccnpub.com
投诉举报::
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享