请选择 目标期刊

基于EEMD-GRU-MLR的短期电力负荷预测 下载:88 浏览:485

邓带雨1 李坚1 张真源1 滕予非2 黄琦1 《电网技术研究》 2020年5期

摘要:
针对电力负荷随机性较强,预测精度不高的问题,通过构建集合经验模态分解(ensembleempiricalmode decomposition,EEMD)以及门控循环单元神经网络(gated recurrent unit neural network,GRU)和多元线性回归(multiple linearregression, MLR)组合而成的EEMD-GRU-MLR(EGM)预测方法,有效提高了电力负荷短期预测精度。首先通过集合经验模态分解将电力负荷数据分解为频率由高到低的不同本征模态函数(intrinsicmodefunctions,IMF),不同频率的本征模态函数分量代表了电力负荷不同的部分特征,随后分别使用多元线性回归方法和GRU神经网络方法对低频部分和高频部分进行快速准确的预测,最后将所得各预测结果组合后得到完整的预测结果。EGM预测方法不但能够对电力负荷的变化趋势进行有效预测,而且能够准确预测随机性较强的局部特征。最后通过实验验证,该方法有效地提高了负荷预测精度。
[1/1]
在线客服::点击联系客服
联系电话::400-188-5008
客服邮箱::service@ccnpub.com
投诉举报::feedback@ccnpub.com
人工客服

工作时间(9:00-18:00)
官方公众号

科技成果·全球共享