检 索
学术期刊
切换导航
首页
文章
期刊
投稿
首发
学术会议
图书中心
新闻
新闻动态
科学前沿
合作
我们
一封信
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
我要投稿
查看投稿进度
学术期刊
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
在线客服
客服电话:
400-188-5008
客服邮箱:
service@ccnpub.com
投诉举报:
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享
请选择
目标期刊
首页
期刊
文章
基于EEMD-GRU-MLR的短期电力负荷预测
下载:
88
浏览:
485
邓带雨1
李坚1
张真源1
滕予非2
黄琦1
《电网技术研究》
2020年5期
摘要:
针对电力负荷随机性较强,预测精度不高的问题,通过构建集合经验模态分解(ensembleempiricalmode decomposition,EEMD)以及门控循环单元神经网络(gated recurrent unit neural network,GRU)和多元线性回归(multiple linearregression, MLR)组合而成的EEMD-GRU-MLR(EGM)预测方法,有效提高了电力负荷短期预测精度。首先通过集合经验模态分解将电力负荷数据分解为频率由高到低的不同本征模态函数(intrinsicmodefunctions,IMF),不同频率的本征模态函数分量代表了电力负荷不同的部分特征,随后分别使用多元线性回归方法和GRU神经网络方法对低频部分和高频部分进行快速准确的预测,最后将所得各预测结果组合后得到完整的预测结果。EGM预测方法不但能够对电力负荷的变化趋势进行有效预测,而且能够准确预测随机性较强的局部特征。最后通过实验验证,该方法有效地提高了负荷预测精度。
[1/1]
|<
<
1
>
>|
在线客服::
点击联系客服
联系电话::
400-188-5008
客服邮箱::
service@ccnpub.com
投诉举报::
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享