检 索
学术期刊
切换导航
首页
文章
期刊
投稿
首发
学术会议
图书中心
新闻
新闻动态
科学前沿
合作
我们
一封信
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
我要投稿
查看投稿进度
学术期刊
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
在线客服
客服电话:
400-188-5008
客服邮箱:
service@ccnpub.com
投诉举报:
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享
请选择
目标期刊
首页
期刊
文章
基于LambdaMART算法的微信公众号排序
下载:
24
浏览:
207
渠北浚1 白宇1 蔡东风1 陈建军2
《中文研究》
2019年10期
摘要:
随着移动应用的普及,微信公众号已经成为人们获取信息的重要来源之一。微信公众号排序是获取优质信息、节约信息管理成本的必要手段。现有的公众号排序方法主要是对总阅读数、总点赞数等量化指标进行人工经验赋权得到排序结果,忽略了文章内容对公众号选择的影响。该文在保留量化指标的基础上,提出了主题垂直性、发文稳定性、主题覆盖率和主题相关性等微信篇章排序特征,使用LambdaMART算法针对上述特征集合进行排序学习,并通过主成分分析进行特征选择优化。实验结果表明,在公众号排序方面,LambdaMART方法优于现有其他方法,相关实验也证明了基于微信篇章内容分析特征的有效性。
[1/1]
|<
<
1
>
>|
在线客服::
点击联系客服
联系电话::
400-188-5008
客服邮箱::
service@ccnpub.com
投诉举报::
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享